BOUNDED VERTEX COLORINGS OF GRAPHS

被引:37
|
作者
HANSEN, P
HERTZ, A
KUPLINSKY, J
机构
[1] UNIV MONTREAL,IRO,MONTREAL H3C 3J7,QUEBEC,CANADA
[2] RUTGERS STATE UNIV,DIMACS,NEW BRUNSWICK,NJ 08903
[3] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0012-365X(93)90165-P
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A bounded vertex coloring of a graph G is a usual vertex coloring in which each color is used at most k times (where k is a given number). The bounded chromatic number gamma(k)(G) of G is the smallest number of colors such that G admits a bounded coloring. Upper and lower bounds on gamma(k)(G) are given in terms of k, the number n of vertices, the usual chromatic number gamma(G) and the maximum degree DELTA(G) of G. Complexity of bounded vertex coloring is discussed and severaL classes of graphs for which this problem is polynomially solvable are identified.
引用
收藏
页码:305 / 312
页数:8
相关论文
共 50 条
  • [41] On the vertex-distinguishing proper edge-colorings of graphs
    Bazgan, C
    Harkat-Benhamdine, A
    Li, H
    Wozniak, M
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 75 (02) : 288 - 301
  • [42] Vertex-Distinguishing E-Total Colorings of Graphs
    Xiang’en Chen
    Yue Zu
    Jin Xu
    Zhiwen Wang
    Bing Yao
    [J]. Arabian Journal for Science and Engineering, 2011, 36 : 1485 - 1500
  • [43] Dehn colorings and vertex-weight invariants for spatial graphs
    Oshiro, Kanako
    Oyamaguchi, Natsumi
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2022, 307
  • [44] Vertex-distinguishing I-total colorings of graphs
    Chen, Xiang'en
    Li, Ze-peng
    [J]. UTILITAS MATHEMATICA, 2014, 95 : 319 - 327
  • [45] VERTEX-DISTINGUISHING COLORINGS OF GRAPHS A SURVEY OF RECENT DEVELOPMENTS
    Escuadro, Henry
    Okamoto, Futaba
    Zhang, Ping
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2007, 4 (03) : 277 - 299
  • [46] Online Vertex Colorings of Random Graphs Without Monochromatic Subgraphs
    Marciniszyn, Martin
    Spoehel, Reto
    [J]. PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 486 - 493
  • [47] Palettes of Dehn colorings for spatial graphs and the classification of vertex conditions
    Oshiro, Kanako
    Oyamaguchi, Natsumi
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2021, 30 (03)
  • [48] Some Results on the Rainbow Vertex-Disconnection Colorings of Graphs
    Yindi Weng
    [J]. Graphs and Combinatorics, 2024, 40
  • [49] Vertex-Distinguishing E-Total Colorings of Graphs
    Chen, Xiang'en
    Zu, Yue
    Xu, Jin
    Wang, Zhiwen
    Yao, Bing
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2011, 36 (08) : 1485 - 1500
  • [50] Adjacent vertex distinguishing edge-colorings and total-colorings of the lexicographic product of graphs
    Tian, Shuangliang
    Wang, Qian
    [J]. DISCRETE APPLIED MATHEMATICS, 2015, 185 : 220 - 226