ULAM-HYERS-RASSIAS STABILITY OF A NONLINEAR STOCHASTIC ITO-VOLTERRA INTEGRAL EQUATION

被引:2
|
作者
Ngo Phuoc Nguyen Ngoc [1 ]
Nguyen Van Vinh [2 ]
机构
[1] Hue Univ Sci, Dept Math, 77 Nguyen Hue St, Hue City, Vietnam
[2] Hue Univ Educ, Dept Math, 32 Le Loi St, Hue City, Vietnam
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2018年 / 10卷 / 04期
关键词
Ulam-Hyers-Rassias stability; Stochastic integral equations; Banach's fixed point theorem;
D O I
10.7153/dea-2018-10-27
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using the classical Banach contraction principle, we investigate and establish the stability in the sense of Ulam-Hyers and in the sense of Ulam-Hyers-Rassias for the following stochastic integral equation X-t = xi(t) + integral(t)(0) A(t, s, X-s)ds + integral(t)(0) B(t,s,X-s)dW(s), where integral(t)(0) B(t,s,X-s)dW(s) is Ito integral.
引用
收藏
页码:397 / 411
页数:15
相关论文
共 50 条
  • [31] Ulam-Hyers-Rassias stability for stochastic differential equations driven by the time-changed Brownian motion
    Long, Qinyi
    Yang, Chunhua
    Li, Zhi
    Xu, Liping
    SYSTEMS & CONTROL LETTERS, 2024, 191
  • [32] Hyers-Ulam Stability of Nonlinear Integral Equation
    Mortaza Gachpazan
    Omid Baghani
    Fixed Point Theory and Applications, 2010
  • [33] On the Hyers-Ulam-Rassias stability of an equation of Davison
    Kim, YH
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2002, 33 (05): : 713 - 726
  • [34] Hyers-Ulam-Rassias stability of an equation of Davison
    Jung, SM
    Sahoo, PK
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 238 (01) : 297 - 304
  • [35] Wavelets method for solving nonlinear stochastic Ito-Volterra integral equations
    Heydari, Mohammad Hossein
    Hooshmandasl, Mohammad Reza
    Cattani, Carlo
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (01) : 81 - 95
  • [36] Euler polynomial solutions of nonlinear stochastic Ito-Volterra integral equations
    Mirzaee, Farshid
    Samadyar, Nasrin
    Hoseini, Seyede Fatemeh
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 574 - 585
  • [37] A collocation technique for solving nonlinear Stochastic Ito-Volterra integral equations
    Mirzaee, Farshid
    Hadadiyan, Elham
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 1011 - 1020
  • [38] On Hyers-Ulam-Rassias stability of the Pexider equation
    Jun, KW
    Shin, DS
    Kim, BD
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 239 (01) : 20 - 29
  • [39] Ulam-Hyers-Rassias Stability for a Class of Fractional Integro-Differential Equations
    Capelas de Oliveira, E.
    Sousa, J. Vanterler da C.
    RESULTS IN MATHEMATICS, 2018, 73 (03)
  • [40] Generalized Ulam-Hyers-Rassias Stability Results of Solution for Nonlinear Fractional Differential Problem with Boundary Conditions
    Naimi, A.
    Tellab, B.
    Altayeb, Y.
    Moumen, A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021