ULAM-HYERS-RASSIAS STABILITY OF A NONLINEAR STOCHASTIC ITO-VOLTERRA INTEGRAL EQUATION

被引:2
|
作者
Ngo Phuoc Nguyen Ngoc [1 ]
Nguyen Van Vinh [2 ]
机构
[1] Hue Univ Sci, Dept Math, 77 Nguyen Hue St, Hue City, Vietnam
[2] Hue Univ Educ, Dept Math, 32 Le Loi St, Hue City, Vietnam
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2018年 / 10卷 / 04期
关键词
Ulam-Hyers-Rassias stability; Stochastic integral equations; Banach's fixed point theorem;
D O I
10.7153/dea-2018-10-27
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using the classical Banach contraction principle, we investigate and establish the stability in the sense of Ulam-Hyers and in the sense of Ulam-Hyers-Rassias for the following stochastic integral equation X-t = xi(t) + integral(t)(0) A(t, s, X-s)ds + integral(t)(0) B(t,s,X-s)dW(s), where integral(t)(0) B(t,s,X-s)dW(s) is Ito integral.
引用
收藏
页码:397 / 411
页数:15
相关论文
共 50 条
  • [21] Ulam-Hyers-Rassias stability for generalized fractional differential equations
    Boucenna, Djalal
    Ben Makhlouf, Abdellatif
    El-hady, El-sayed
    Hammami, Mohamed Ali
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 10267 - 10280
  • [22] Ulam-Hyers-Rassias stability of pseudoparabolic partial differential equations
    Lungu, Nicolaie
    Ciplea, Sorina Anamaria
    CARPATHIAN JOURNAL OF MATHEMATICS, 2015, 31 (02) : 233 - 240
  • [23] An investigation into the characteristics of VFIDEs with delay: solvability criteria, Ulam-Hyers-Rassias and Ulam-Hyers stability
    Miah, Bapan Ali
    Sen, Mausumi
    Murugan, R.
    Sarkar, Nimai
    Gupta, Damini
    JOURNAL OF ANALYSIS, 2024, 32 (5): : 2749 - 2766
  • [24] A class of impulsive nonautonomous differential equations and Ulam-Hyers-Rassias stability
    Wang, JinRong
    Lin, Zeng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (05) : 868 - 880
  • [25] Mittag-leffler-hyers-ulam-rassias stability of deterministic semilinear fractional volterra integral equation and of stochastic systems by brownian motion
    Moharramnia, A.
    Eghbali, N.
    Rassias, J.M.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2020, 82 (01): : 103 - 110
  • [26] MITTAG-LEFFLER-HYERS-ULAM-RASSIAS STABILITY OF DETERMINISTIC SEMILINEAR FRACTIONAL VOLTERRA INTEGRAL EQUATION AND OF STOCHASTIC SYSTEMS BY BROWNIAN MOTION
    Moharramnia, A.
    Eghbali, N.
    Rassias, J. M.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (01): : 103 - 110
  • [27] Two reliable methods for numerical solution of nonlinear stochastic Ito-Volterra integral equation
    Singh, Priya
    Saha Ray, Santanu
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2022, 40 (05) : 891 - 913
  • [28] Ulam-Hyers-Rassias Stability of Stochastic Functional Differential Equations via Fixed Point Methods
    Ben Makhlouf, Abdellatif
    Mchiri, Lassaad
    Rhaima, Mohamed
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [29] Ulam-Hyers-Rassias Stability of Nonlinear Differential Equations with Riemann-Liouville Fractional Derivative
    El-hady, El-sayed
    Ben Makhlouf, Abdellatif
    Boulaaras, Salah
    Mchiri, Lassaad
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [30] Hyers-Ulam Stability of Nonlinear Integral Equation
    Gachpazan, Mortaza
    Baghani, Omid
    FIXED POINT THEORY AND APPLICATIONS, 2010,