On the Turnpike Property for Mean Field Games

被引:0
|
作者
Porretta, Alessio [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
来源
MINIMAX THEORY AND ITS APPLICATIONS | 2018年 / 3卷 / 02期
关键词
Mean field games; monotonicity; ergodic stationary state; exponential turnpike property; optimal control;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the behavior of mean field games systems in the long horizon, under the assumption of monotonicity of the coupling term. Assuming that the Hamiltonian is globally Lipschitz and locally uniformly convex, we show that the time dependent solution is exponentially close to the ergodic stationary state in the long intermediate stages. This is evidence of the so called exponential turnpike property for optimal control problems. Indeed, our proof follows a general approach which relies on the stabilization through the Riccati feedback of the associated linearized system.
引用
收藏
页码:285 / 312
页数:28
相关论文
共 50 条
  • [11] Turnpike Theorems for Markov Games
    Vassili Kolokoltsov
    Wei Yang
    Dynamic Games and Applications, 2012, 2 : 294 - 312
  • [12] Mean field games with congestion
    Achdou, Yves
    Porretta, Alessio
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (02): : 443 - 480
  • [13] Quadratic mean field games
    Ullmo, Denis
    Swiecicki, Igor
    Gobron, Thierry
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2019, 799 : 1 - 35
  • [14] Hypergraphon mean field games
    Cui, Kai
    KhudaBukhsh, Wasiur R.
    Koeppl, Heinz
    CHAOS, 2022, 32 (11)
  • [15] Robust Mean Field Games
    Dario Bauso
    Hamidou Tembine
    Tamer Başar
    Dynamic Games and Applications, 2016, 6 : 277 - 303
  • [16] Mean Field Games and Applications
    Gueant, Oliviier
    Lasry, Jean-Michel
    Lions, Pierre-Louis
    PARIS-PRINCETON LECTURES ON MATHEMATICAL FINANCE 2010, 2011, 2003 : 205 - 266
  • [17] Robust Mean Field Games
    Bauso, Dario
    Tembine, Hamidou
    Basar, Tamer
    DYNAMIC GAMES AND APPLICATIONS, 2016, 6 (03) : 277 - 303
  • [18] Turnpike Theorems for Markov Games
    Kolokoltsov, Vassili
    Yang, Wei
    DYNAMIC GAMES AND APPLICATIONS, 2012, 2 (03) : 294 - 312
  • [19] Mean field portfolio games
    Fu, Guanxing
    Zhou, Chao
    FINANCE AND STOCHASTICS, 2022, 27 (1) : 189 - 231
  • [20] Mean Field Games on Prosumers
    Baar W.
    Bauso D.
    Operations Research Forum, 3 (4)