Computing the Burrows-Wheeler transform in place and in small space

被引:9
|
作者
Crochemore, Maxime [1 ]
Grossi, Roberto [2 ]
Karkkainen, Juha [3 ]
Landau, Gad M. [4 ,5 ]
机构
[1] Kings Coll London, London WC2R 2LS, England
[2] Univ Pisa, Dipartimento Informat, I-56100 Pisa, Italy
[3] Univ Helsinki, Dept Comp Sci, FIN-00014 Helsinki, Finland
[4] Univ Haifa, Dept Comp Sci, IL-31999 Haifa, Israel
[5] NYU Poly, Dept Comp Sci & Engn, Brooklyn, NY USA
基金
美国国家科学基金会; 以色列科学基金会; 芬兰科学院;
关键词
Burrows-Wheeler transform; In-place algorithms; String algorithms; Suffix sorting;
D O I
10.1016/j.jda.2015.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the problem of computing the Burrows-Wheeler Transform (BWT) using small additional space. Our in-place algorithm does not need the explicit storage for the suffix sort array and the output array, as typically required in previous work. It relies on the combinatorial properties of the BWT, and runs in O(n(2)) time in the comparison model using O(1) extra memory cells, apart from the array of n cells storing the n characters of the input text. We then discuss the time-space trade-off when O(k.sigma(k)) extra memory cells are allowed with sigma(k) distinct characters, providing an O((n(2)/k + n) log k)-time algorithm to obtain (and invert) the BWT. For example in real systems where the alphabet size is a constant, for any arbitrarily small c > 0, the BWT of a text of n bytes can be computed in O(n epsilon(-1) log n) time using just epsilon n extra bytes. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 52
页数:9
相关论文
共 50 条
  • [31] Burrows-Wheeler Transform of Words Defined by Morphisms
    Brlek, Srecko
    Frosini, Andrea
    Mancini, Ilaria
    Pergola, Elisa
    Rinaldi, Simone
    COMBINATORIAL ALGORITHMS, IWOCA 2019, 2019, 11638 : 393 - 404
  • [32] Balancing and clustering of words in the Burrows-Wheeler transform
    Restivo, Antonio
    Rosone, Giovanna
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (27) : 3019 - 3032
  • [33] Burrows-Wheeler transform acceleration based on CUDA
    Sheng, Chang
    Dai, Fengzhi
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2021), 2021, : 596 - 599
  • [34] Space Efficient Algorithms for the Burrows-Wheeler Backtransformation
    Ulrich Lauther
    Tamás Lukovszki
    Algorithmica, 2010, 58 : 339 - 351
  • [35] Multi-allelic Positional Burrows-Wheeler Transform
    Naseri, Ardalan
    Zhi, Degui
    Zhang, Shaojie
    2017 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2017,
  • [36] DNA sequence compression using the Burrows-Wheeler Transform
    Adjeroh, D
    Zhang, Y
    Mukherjee, A
    Powell, M
    Bell, T
    CSB2002: IEEE COMPUTER SOCIETY BIOINFORMATICS CONFERENCE, 2002, : 303 - 313
  • [37] Metagenomic analysis through the extended Burrows-Wheeler transform
    Veronica Guerrini
    Felipe A. Louza
    Giovanna Rosone
    BMC Bioinformatics, 21
  • [38] A survey of string orderings and their application to the Burrows-Wheeler transform
    Daykin, Jacqueline W.
    Groult, Richard
    Guesnet, Yannick
    Lecroq, Thierry
    Lefebvre, Arnaud
    Leonard, Martine
    Prieur-Gaston, Elise
    THEORETICAL COMPUTER SCIENCE, 2018, 710 : 52 - 65
  • [39] Space efficient algorithms for the Burrows-Wheeler backtransformation
    Lauther, U
    Lukovszki, T
    ALGORITHMS - ESA 2005, 2005, 3669 : 293 - 304
  • [40] Space Efficient Algorithms for the Burrows-Wheeler Backtransformation
    Lauther, Ulrich
    Lukovszki, Tamas
    ALGORITHMICA, 2010, 58 (02) : 339 - 351