Space efficient algorithms for the Burrows-Wheeler backtransformation

被引:0
|
作者
Lauther, U [1 ]
Lukovszki, T [1 ]
机构
[1] Siemens AG, Corp Technol, D-81730 Munich, Germany
来源
ALGORITHMS - ESA 2005 | 2005年 / 3669卷
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Burrows-Wheeler transformation is used for effective data compression, e.g., in the well known program bzip2. Compression and decompression are done in a block-wise fashion; larger blocks usually result in better compression rates. With the currently used algorithms for decompression, 4n bytes of auxiliary memory for processing a block of n bytes are needed, 0 < n < 2(32). This may pose a problem in embedded systems (e.g., mobile phones), where RAM is a scarce resource. In this paper we present algorithms that reduce the memory need without sacrificing speed too much. The main results are: Assuming an input string of n characters, 0 < n < 2(32), the reverse Burrows-Wheeler transformation can be done with 1.625 n bytes of auxiliary memory and O(n) runtime, using just a few operations per input character. Alternatively, we can use n/t bytes and 256 t n operations. The theoretical results are backed up by experimental data showing the space-time tradeoff.
引用
收藏
页码:293 / 304
页数:12
相关论文
共 50 条
  • [1] Space Efficient Algorithms for the Burrows-Wheeler Backtransformation
    Ulrich Lauther
    Tamás Lukovszki
    Algorithmica, 2010, 58 : 339 - 351
  • [2] Space Efficient Algorithms for the Burrows-Wheeler Backtransformation
    Lauther, Ulrich
    Lukovszki, Tamas
    ALGORITHMICA, 2010, 58 (02) : 339 - 351
  • [3] Space-Efficient Construction of the Burrows-Wheeler Transform
    Beller, Timo
    Zwerger, Maike
    Gog, Simon
    Ohlebusch, Enno
    STRING PROCESSING AND INFORMATION RETRIEVAL (SPIRE 2013), 2013, 8214 : 5 - 16
  • [4] Space-Efficient Computation of the Burrows-Wheeler Transform
    Fuentes-Sepulveda, Jose
    Navarro, Gonzalo
    Nekrich, Yakov
    2019 DATA COMPRESSION CONFERENCE (DCC), 2019, : 132 - 141
  • [5] Algorithms to compute the Burrows-Wheeler Similarity Distribution
    Louza, Felipe A.
    Telles, Guilherme P.
    Gog, Simon
    Zhao, Liang
    THEORETICAL COMPUTER SCIENCE, 2019, 782 : 145 - 156
  • [6] Parallel algorithms for Burrows-Wheeler compression and decompression
    Edwards, James A.
    Vishkin, Uzi
    THEORETICAL COMPUTER SCIENCE, 2014, 525 : 10 - 22
  • [7] Space-efficient whole genome comparisons with Burrows-Wheeler transforms
    Lippert, RA
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2005, 12 (04) : 407 - 415
  • [8] A space-efficient construction of the Burrows-Wheeler transform for genomic data
    Lippert, RA
    Mobarry, CM
    Walenz, BP
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2005, 12 (07) : 943 - 951
  • [9] Second step algorithms in the Burrows-Wheeler compression algorithm
    Deorowicz, S
    SOFTWARE-PRACTICE & EXPERIENCE, 2002, 32 (02): : 99 - 111
  • [10] Computing the Burrows-Wheeler transform in place and in small space
    Crochemore, Maxime
    Grossi, Roberto
    Karkkainen, Juha
    Landau, Gad M.
    JOURNAL OF DISCRETE ALGORITHMS, 2015, 32 : 44 - 52