A topological partition principle

被引:0
|
作者
Kneser, H
机构
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:601 / 616
页数:16
相关论文
共 50 条
  • [41] On Bloch's "Principle of Topological Continuity"
    Bergweiler, Walter
    Eremenko, Alexandre
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2024, 24 (03) : 605 - 630
  • [42] ADDITIVITY PRINCIPLE FROM A TOPOLOGICAL VIEWPOINT .1. FORMULATION OF PRINCIPLE
    ROUVRAY, DH
    CHEMTECH, 1973, (JUN) : 379 - 384
  • [43] From Quantum Curves to Topological String Partition Functions
    Ioana Coman
    Elli Pomoni
    Jörg Teschner
    Communications in Mathematical Physics, 2023, 399 : 1501 - 1548
  • [44] Estimating topological entropy using ordinal partition networks
    Sakellariou, Konstantinos
    Stemler, Thomas
    Small, Michael
    PHYSICAL REVIEW E, 2021, 103 (02)
  • [45] THE PARTITION-FUNCTION FOR TOPOLOGICAL FIELD-THEORIES
    GEGENBERG, J
    KUNSTATTER, G
    ANNALS OF PHYSICS, 1994, 231 (02) : 270 - 289
  • [46] Resurgence of Refined Topological Strings and Dual Partition Functions
    Alexandrov, Sergey
    Marino, Marcos
    Pioline, Boris
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20
  • [47] Topological entanglement entropy from the holographic partition function
    Fendley, Paul
    Fisher, Matthew P. A.
    Nayak, Chetan
    JOURNAL OF STATISTICAL PHYSICS, 2007, 126 (06) : 1111 - 1144
  • [48] Three-Partition Hodge Integrals and the Topological Vertex
    Toshio Nakatsu
    Kanehisa Takasaki
    Communications in Mathematical Physics, 2020, 376 : 201 - 234
  • [49] Rigorous computation of topological entropy with respect to a finite partition
    Froyland, G
    Junge, O
    Ochs, G
    PHYSICA D, 2001, 154 (1-2): : 68 - 84
  • [50] Three-Partition Hodge Integrals and the Topological Vertex
    Nakatsu, Toshio
    Takasaki, Kanehisa
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (01) : 201 - 234