Rigorous computation of topological entropy with respect to a finite partition

被引:22
|
作者
Froyland, G
Junge, O [1 ]
Ochs, G
机构
[1] Univ Gesamthsch Paderborn, Dept Math & Comp Sci, D-33095 Paderborn, Germany
[2] Univ Bremen, Inst Dynam Syst, D-28334 Bremen, Germany
来源
PHYSICA D | 2001年 / 154卷 / 1-2期
关键词
topological entropy; topological Markov chain; subshift of finite type; sofic shift; right-resolving presentation;
D O I
10.1016/S0167-2789(01)00216-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a method to compute rigorous upper bounds for the topological entropy h(T, A) of a continuous map T with respect to a fixed (coarse) partition of the phase space A. Long trajectories are not used; rather a single application of T to the phase space produces a topological Markov chain which contains all orbits of T, plus some additional spurious orbits. By considering the Markov chain as a directed graph, and labelling the arcs according to the fixed partition, one constructs a sofic shift with topological entropy greater than or equal to h(T, A). To exactly compute the entropy of the sofic shift, we produce a subshift of finite type with equal entropy via a standard technique; the exact entropy calculation for subshifts is then straightforward. We prove that the upper bounds converge monotonically to h(T, A) as the topological Markov chains become increasingly accurate, The entire procedure is completely automatic. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:68 / 84
页数:17
相关论文
共 50 条
  • [1] Computation of Topological Entropy of Finite Representations of Maps
    Galias, Zbigniew
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS), 2018, : 533 - 536
  • [2] On the Computation of the Topological Entropy of Artificial Grammars
    Vokey, John R.
    Jamieson, Randall K.
    QUANTITATIVE METHODS FOR PSYCHOLOGY, 2020, 16 (04): : 355 - 362
  • [3] Rigorous domain triangulation for the finite element computation
    Ozaki, Katsuhisa
    Liu, Xuefeng
    JSIAM LETTERS, 2024, 16 : 69 - 72
  • [4] Rigorous computation in dynamics based on topological methods for multivector fields
    Woukeng D.
    Sadowski D.
    Leśkiewicz J.
    Lipiński M.
    Kapela T.
    Journal of Applied and Computational Topology, 2024, 8 (4) : 875 - 908
  • [5] Rigorous Calculation of the Partition Function for the Finite Number of Ising Spins
    Peretyatko, Alexey A.
    Bogatyrev, Ivan A.
    Kirienko, Yury V.
    Nefedev, Konstantin V.
    Belokon, Valery I.
    IMETI 2011: 4TH INTERNATIONAL MULTI-CONFERENCE ON ENGINEERING AND TECHNOLOGICAL INNOVATION, VOL II, 2011, : 83 - 86
  • [6] Topological entanglement entropy from the holographic partition function
    Fendley, Paul
    Fisher, Matthew P. A.
    Nayak, Chetan
    JOURNAL OF STATISTICAL PHYSICS, 2007, 126 (06) : 1111 - 1144
  • [7] Estimating topological entropy using ordinal partition networks
    Sakellariou, Konstantinos
    Stemler, Thomas
    Small, Michael
    PHYSICAL REVIEW E, 2021, 103 (02)
  • [8] Topological Entanglement Entropy from the Holographic Partition Function
    Paul Fendley
    Matthew P. A. Fisher
    Chetan Nayak
    Journal of Statistical Physics, 2007, 126 : 1111 - 1144
  • [9] Local conditional entropy in measure for covers with respect to a fixed partition
    Romagnoli, Pierre-Paul
    NONLINEARITY, 2018, 31 (05) : 2201 - 2220
  • [10] Fuzzy Entropy of Fuzzy Partition on a Finite Interval
    Qing, Ming
    2013 SIXTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2013, : 20 - 23