QUADRATURE RULES FOR REGIONS HAVING REGULAR HEXAGONAL SYMMETRY

被引:25
|
作者
LYNESS, JN [1 ]
MONEGATO, G [1 ]
机构
[1] ARGONNE NATL LAB,DIV APPL MATH,ARGONNE,IL 60439
关键词
D O I
10.1137/0714018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:283 / 295
页数:13
相关论文
共 50 条
  • [21] WEIGHTED HERMITE QUADRATURE RULES
    Masjed-Jamei, Mohammad
    Milovanovic, Gradimir V.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2016, 45 : 476 - 498
  • [22] A note on weighted quadrature rules
    Masjed-Jamei, Mohammad
    Area, Ivan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (17) : 6103 - 6113
  • [23] Quadrature and symmetry on the Cubed Sphere
    Bellet, Jean-Baptiste
    Brachet, Matthieu
    Croisille, Jean-Pierre
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 409
  • [24] Quadrature rules for rational functions
    Walter Gautschi
    Laura Gori
    M. Laura Lo Cascio
    Numerische Mathematik, 2000, 86 : 617 - 633
  • [25] A probabilistic model for quadrature rules
    Masjed-Jamei, Mohammad
    Dehghan, Mehdi
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 1520 - 1526
  • [26] Associated symmetric quadrature rules
    Ranga, AS
    deAndrade, EXL
    Phillips, GM
    APPLIED NUMERICAL MATHEMATICS, 1996, 21 (02) : 175 - 183
  • [27] Quadrature rules from a RII type recurrence relation and associated quadrature rules on the unit circle
    Cleonice F. Bracciali
    Junior A. Pereira
    A. Sri Ranga
    Numerical Algorithms, 2020, 83 : 1029 - 1061
  • [28] Quadrature rules from a RII type recurrence relation and associated quadrature rules on the unit circle
    Bracciali, Cleonice F.
    Pereira, Junior A.
    Ranga, A. Sri
    NUMERICAL ALGORITHMS, 2020, 83 (03) : 1029 - 1061
  • [29] The set of anti-Gaussian quadrature rules for the optimal set of quadrature rules in Borges' sense
    Petrovic, Nevena Z.
    Pranic, Miroslav S.
    Stanic, Marija P.
    Mladenovic, Tatjana V. Tomovic
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 442
  • [30] A new class of quadrature rules for estimating the error in Gauss quadrature
    Pejcev, Aleksandar V.
    Reichel, Lothar
    Spalevic, Miodrag M.
    Spalevic, Stefan M.
    APPLIED NUMERICAL MATHEMATICS, 2024, 204 : 206 - 221