Information Theoretic Learning and local modeling for binary and multiclass classification

被引:0
|
作者
Porto-Diaz, Iago [1 ]
Martinez-Rego, David [1 ]
Alonso-Betanzos, Amparo [1 ]
Fontenla-Romero, Oscar [1 ]
机构
[1] Univ A Coruna, Fac Informat, Dept Comp Sci, Campus Elvina S-N, Coruna, Spain
关键词
Machine learning; Classification; FVQIT; Information theoretic learning; Local modeling;
D O I
10.1007/s13748-012-0032-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a learning model for binary and multiclass classification based on local modeling and Information Theoretic Learning (ITL) is described. The training algorithm for the model works on two stages: first, a set of nodes are placed on the frontiers between classes using a modified clustering algorithm based on ITL. Each of these nodes defines a local model. Second, several one-layer neural networks, associated with these local models, are trained to locally classify the points in its proximity. The method is successfully applied to problems with a large amount of instances and high dimension like intrusion detection and microarray gene expression.
引用
收藏
页码:315 / 328
页数:14
相关论文
共 50 条
  • [1] Information Theoretic Learning and local modeling for binary and multiclass classification
    Iago Porto-Díaz
    David Martínez-Rego
    Amparo Alonso-Betanzos
    Oscar Fontenla-Romero
    [J]. Progress in Artificial Intelligence, 2012, 1 (4) : 315 - 328
  • [2] Information–Theoretic Multiclass Classification Based on Binary ClassifiersOn Coding Matrix Design, Reliability and Maximum Number of Classes
    Sviatoslav Voloshynovskiy
    Oleksiy Koval
    Fokko Beekhof
    Taras Holotyak
    [J]. Journal of Signal Processing Systems, 2011, 65 : 413 - 430
  • [3] Information-Theoretic Multiclass Classification Based on Binary Classifiers On Coding Matrix Design, Reliability and Maximum Number of Classes
    Voloshynovskiy, Sviatoslav
    Koval, Oleksiy
    Beekhof, Fokko
    Holotyak, Taras
    [J]. JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2011, 65 (03): : 413 - 430
  • [4] Information Theoretic Rotationwise Robust Binary Descriptor Learning
    El Rhabi, Youssef
    Simon, Loic
    Brun, Luc
    Llados Canet, Josep
    Lumbreras, Felipe
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2016, 2016, 10029 : 368 - 378
  • [5] Improved binary classification performance using an information theoretic criterion
    Burrascano, P
    Pirollo, D
    [J]. NEUROCOMPUTING, 1996, 13 (2-4) : 375 - 383
  • [6] Binary and Multiclass Classification of Histopathological Images Using Machine Learning Techniques
    Wang, Jiatong
    Zhu, Tiantian
    Liang, Shan
    Karthiga, R.
    Narasimhan, K.
    Elamaran, V
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2020, 10 (09) : 2252 - 2258
  • [7] Prototype based classification using information theoretic learning
    Villmann, Th.
    Hammer, B.
    Schleif, F. -M.
    Geweniger, T.
    Fischer, T.
    Cottrell, M.
    [J]. NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 40 - 49
  • [8] Information-Theoretic Dictionary Learning for Image Classification
    Qiu, Qiang
    Patel, Vishal M.
    Chellappa, Rama
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (11) : 2173 - 2184
  • [9] Learning with few examples for binary and multiclass classification using regularization of randomized trees
    Rodner, Erik
    Denzler, Joachim
    [J]. PATTERN RECOGNITION LETTERS, 2011, 32 (02) : 244 - 251
  • [10] Comparing Multiclass, Binary, and Hierarchical Machine Learning Classification schemes for variable stars
    Hosenie, Zafiirah
    Lyon, Robert J.
    Stappers, Benjamin W.
    Mootoovaloo, Arrykrishna
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (04) : 4858 - 4872