Information Theoretic Learning and local modeling for binary and multiclass classification

被引:0
|
作者
Porto-Diaz, Iago [1 ]
Martinez-Rego, David [1 ]
Alonso-Betanzos, Amparo [1 ]
Fontenla-Romero, Oscar [1 ]
机构
[1] Univ A Coruna, Fac Informat, Dept Comp Sci, Campus Elvina S-N, Coruna, Spain
关键词
Machine learning; Classification; FVQIT; Information theoretic learning; Local modeling;
D O I
10.1007/s13748-012-0032-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a learning model for binary and multiclass classification based on local modeling and Information Theoretic Learning (ITL) is described. The training algorithm for the model works on two stages: first, a set of nodes are placed on the frontiers between classes using a modified clustering algorithm based on ITL. Each of these nodes defines a local model. Second, several one-layer neural networks, associated with these local models, are trained to locally classify the points in its proximity. The method is successfully applied to problems with a large amount of instances and high dimension like intrusion detection and microarray gene expression.
引用
收藏
页码:315 / 328
页数:14
相关论文
共 50 条
  • [41] Data modeling in machine learning based on information-theoretic measures
    Liu, YH
    Li, AJ
    Luo, SW
    [J]. 2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 1219 - 1222
  • [42] Supervised nonparametric information theoretic classification
    Archambeau, C
    Butz, T
    Popovici, V
    Verleysen, M
    Thiran, JP
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 414 - 417
  • [43] Generative Maximum Entropy Learning for Multiclass Classification
    Dukkipati, Ambedkar
    Pandey, Gaurav
    Ghoshdastidar, Debarghya
    Koley, Paramita
    Sriram, D. M. V. Satya
    [J]. 2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 141 - 150
  • [44] Active learning Rotation Forest for multiclass classification
    Kazllarof, Vangjel
    Karlos, Stamatis
    Kotsiantis, Sotiris
    [J]. COMPUTATIONAL INTELLIGENCE, 2019, 35 (04) : 891 - 918
  • [45] Information Theoretic Classification of Problems for Metaheuristics
    Steer, Kent C. B.
    Wirth, Andrew
    Halgamuge, Saman K.
    [J]. SIMULATED EVOLUTION AND LEARNING, PROCEEDINGS, 2008, 5361 : 319 - 328
  • [46] Information theoretic approach for accounting classification
    Ribeiro, E. M. S.
    Prataviera, G. A.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 416 : 651 - 660
  • [47] A machine learning software tool for multiclass classification
    Wang, Shangzhou
    Lu, Haohui
    Khan, Arif
    Hajati, Farshid
    Khushi, Matloob
    Uddin, Shahadat
    [J]. SOFTWARE IMPACTS, 2022, 13
  • [48] Efficient Multiclass Boosting Classification with Active Learning
    Huang, Jian
    Ertekin, Seyda
    Song, Yang
    Zha, Hongyuan
    Giles, C. Lee
    [J]. PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2007, : 297 - 308
  • [49] Scalable Active Learning for Multiclass Image Classification
    Joshi, Ajay J.
    Porikli, Fatih
    Papanikolopoulos, Nikolaos P.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) : 2259 - 2273
  • [50] Comparing techniques for multiclass classification using binary SVM predictors
    Lorena, AC
    de Carvalho, ACPLF
    [J]. MICAI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2004, 2972 : 272 - 281