Improved binary classification performance using an information theoretic criterion

被引:0
|
作者
Burrascano, P [1 ]
Pirollo, D [1 ]
机构
[1] UNIV ROMA LA SAPIENZA, DIPARTIMENTO INFORMAT, I-00184 ROME, ITALY
关键词
feedforward neural networks; classification; Kullback-Leibler distance;
D O I
10.1016/0925-2312(96)00025-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feedforward neural networks trained to solve classification problems define an approximation of the conditional probabilities P(C-i\x) if the output units correspond to categories C-i. The present paper shows that if a least mean squared error cost function is minimised during training phase, the resulting approximation of the P(C-i\x)s is poor in the ranges of the input variable x where the conditional probabilities take on very low values. The use of the Kullback-Leibler distance measure is proposed to overcome this limitation; a cost function derived from this information theoretic measure is defined and a computationally light training procedure is derived in the case of binary classification problems. The effectiveness of the proposed procedure is verified by means of comparative experiments.
引用
收藏
页码:375 / 383
页数:9
相关论文
共 50 条
  • [1] PERFORMANCE CRITERION FOR INFORMATION THEORETIC DATA-ANALYSIS
    KINSEY, JL
    LEVINE, RD
    [J]. CHEMICAL PHYSICS LETTERS, 1979, 65 (03) : 413 - 416
  • [2] Information Theoretic Learning and local modeling for binary and multiclass classification
    Iago Porto-Díaz
    David Martínez-Rego
    Amparo Alonso-Betanzos
    Oscar Fontenla-Romero
    [J]. Progress in Artificial Intelligence, 2012, 1 (4) : 315 - 328
  • [3] Information Theoretic Learning and local modeling for binary and multiclass classification
    Porto-Diaz, Iago
    Martinez-Rego, David
    Alonso-Betanzos, Amparo
    Fontenla-Romero, Oscar
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE, 2012, 1 (04) : 315 - 328
  • [4] Pose estimation in SAR using an information theoretic criterion
    Principe, JC
    Xu, DX
    Fisher, JW
    [J]. ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY V, 1998, 3370 : 218 - 229
  • [5] Binary cybergenre classification using theoretic feature measures
    Dong, Lei
    Watters, Carolyn
    Duffy, Jack
    Shepherd, Michael
    [J]. 2006 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, (WI 2006 MAIN CONFERENCE PROCEEDINGS), 2006, : 313 - +
  • [6] Using reaction times and binary responses to estimate psychophysical performance: an information theoretic analysis
    Stone, James V.
    [J]. FRONTIERS IN NEUROSCIENCE, 2014, 8
  • [7] CLASSIFICATION OF VOWELS USING CRITERION OF MAXIMUM OF INFORMATION
    TRETIAKO.A
    [J]. LINGUISTICS, 1972, (86) : 87 - 93
  • [8] Information theoretic criterion for waveform selection
    Roman, Jaime R.
    Garnham, John W.
    Antonik, Paul
    [J]. 2006 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP PROCEEDINGS, VOLS 1 AND 2, 2006, : 444 - +
  • [9] Prototype based classification using information theoretic learning
    Villmann, Th.
    Hammer, B.
    Schleif, F. -M.
    Geweniger, T.
    Fischer, T.
    Cottrell, M.
    [J]. NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 40 - 49
  • [10] Source enumeration using a Signal-Selective Information Theoretic Criterion
    Shrimpton, TE
    Schell, SV
    [J]. MILCOM 97 PROCEEDINGS, VOLS 1-3, 1997, : 1092 - 1097