Synchronizing weighted automata

被引:1
|
作者
Ivan, Szabolcs [1 ]
机构
[1] Univ Szeged, Szeged, Hungary
关键词
D O I
10.4204/EPTCS.151.21
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce two generalizations of synchronizability to automata with transitions weighted in an arbitrary semiring K=(K,+, .,0,1). (or equivalently, to finite sets of matrices in K-nxn.) Let us call a matrix A location-synchronizing if there exists a column in A consisting of nonzero entries such that all the other columns of A are filled by zeros. If additionally all the entries of this designated column are the same, we call A synchronizing. Note that these notions coincide for stochastic matrices and also in the Boolean semiring. A set M of matrices in Knxn is called (location-) synchronizing if M generates a matrix subsemigroup containing a (location-) synchronizingmatrix. The K-(location) synchronizability problem is the following: given a finite setM of nxn matrices with entries in K, is it (location-) synchronizing? Both problems are PSPACE-hard for any nontrivial semiring. We give sufficient conditions for the semiring K when the problems are PSPACE-complete and show several undecidability results as well, e.g. synchronizability is undecidable if 1 has infinite order in (K,+, 0) or when the free semigroup on two generators can be embedded into (K, .,1).
引用
收藏
页码:301 / 313
页数:13
相关论文
共 50 条
  • [31] Synchronizing billion-scale automata
    Tas, Mustafa Kemal
    Kaya, Kamer
    Yenigun, Husnu
    INFORMATION SCIENCES, 2021, 574 : 162 - 175
  • [32] CONTROL OF AUTOMATA THAT HAVE A SYNCHRONIZING SEQUENCE
    SPERANSKIY, DV
    ENGINEERING CYBERNETICS, 1971, 9 (01): : 74 - +
  • [33] Synchronizing automata with a letter of deficiency 2
    Ananichev, D. S.
    Volkov, M. V.
    Zaks, Yu. I.
    THEORETICAL COMPUTER SCIENCE, 2007, 376 (1-2) : 30 - 41
  • [34] Synchronizing Almost-Group Automata
    Berlinkov, Mikhail V.
    Nicaud, Cyril
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2020, 31 (08) : 1091 - 1112
  • [35] An Extremal Series of Eulerian Synchronizing Automata
    Szykula, Marek
    Vorel, Vojtech
    DEVELOPMENTS IN LANGUAGE THEORY, DLT 2016, 2016, 9840 : 380 - 392
  • [36] On an optimal synchronizing experiment with linear automata
    Bogomolov, A.S.
    Speranskii, D.V.
    2002, IAPC Nauka/Interperiodica (41)
  • [37] Synchronizing finite automata on Eulerian digraphs
    Kari, J
    THEORETICAL COMPUTER SCIENCE, 2003, 295 (1-3) : 223 - 232
  • [38] Synchronizing Bounded Partially Ordered Automata
    Cui Z.-H.
    He Y.
    Sun S.-Y.
    Jisuanji Xuebao/Chinese Journal of Computers, 2019, 42 (03): : 610 - 623
  • [39] PARTLY SYNCHRONIZING SEQUENCE FOR FINITE AUTOMATA
    SHARYSHEV, AA
    AVTOMATIKA I VYCHISLITELNAYA TEKHNIKA, 1978, (04): : 36 - 38
  • [40] SURFACE DIMENSION, TILES, AND SYNCHRONIZING AUTOMATA
    Protasov, Vladimir Yu
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (04) : 3463 - 3486