Synchronizing billion-scale automata

被引:3
|
作者
Tas, Mustafa Kemal [1 ]
Kaya, Kamer [1 ]
Yenigun, Husnu [1 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, Comp Sci & Engn, TR-34956 Istanbul, Turkey
关键词
Finite state automata; Synchronizing sequences; Synchronization heuristics; Multi-core CPUs; GPUs; RESET SEQUENCES; CHECKING;
D O I
10.1016/j.ins.2021.05.072
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Synchronizing sequences for large-scale automata have gained popularity recently due to their practical use cases especially to have a faster and better testing process. In many applications, shorter sequences imply less overhead and faster processing time but the problem of finding the shortest synchronizing sequence is NP-hard and requires heuristic approaches to be solved. State-of-the-art heuristics manage to obtain desirable, short sequences with relatively small execution times. However, all these heuristics suffer their quadratic memory complexity and fail to scale when the input automaton gets larger. In this paper, we propose an approach exploiting GPUs and hybrid parallelism which can generate synchronizing sequences even for billion-scale automata, in a short amount of time. Overall, the algorithm can generate a synchronizing sequence for a random automaton with n = 10(8) states in 12.1 s, n = 5 x 10(8) states in 69.1 s, and billion states in 148.2 s. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:162 / 175
页数:14
相关论文
共 50 条
  • [1] Solving Billion-Scale Knapsack Problems
    Zhang, Xingwen
    Qi, Feng
    Hua, Zhigang
    Yang, Shuang
    [J]. WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 3105 - 3111
  • [2] TOWARDS BILLION-SCALE SOCIAL SIMULATIONS
    Suzumura, Toyotaro
    Houngkaew, Charuwat
    Kanezashi, Hiroki
    [J]. PROCEEDINGS OF THE 2014 WINTER SIMULATION CONFERENCE (WSC), 2014, : 781 - 792
  • [3] Billion-Scale Similarity Search with GPUs
    Johnson, Jeff
    Douze, Matthijs
    Jegou, Herve
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2021, 7 (03) : 535 - 547
  • [4] Billion-scale Detection of Isomorphic Nodes
    Cappelletti, Luca
    Fontana, Tommaso
    Reese, Justin
    Bader, David A.
    [J]. 2023 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, IPDPSW, 2023, : 230 - 233
  • [5] Creating a Billion-Scale Searchable Web Archive
    Gomes, Daniel
    Costa, Miguel
    Cruz, David
    Miranda, Joao
    Fontes, Simao
    [J]. PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'13 COMPANION), 2013, : 1059 - 1065
  • [6] PEGASUS: MINING BILLION-SCALE GRAPHS IN THE CLOUD
    Kang, U.
    Chau, Duen Horng Polo
    Faloutsos, Christos
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 5341 - 5344
  • [7] Hierarchical quantization for billion-scale similarity retrieval
    Chen, Wei
    Ma, Xiao
    Zeng, Jiangfeng
    Duan, Yaoqing
    Zhong, Grace
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2021, 90 (90)
  • [8] Mining billion-scale tensors: algorithms and discoveries
    Jeon, Inah
    Papalexakis, Evangelos E.
    Faloutsos, Christos
    Sael, Lee
    Kang, U.
    [J]. VLDB JOURNAL, 2016, 25 (04): : 519 - 544
  • [9] HEigen: Spectral Analysis for Billion-Scale Graphs
    Kang, U.
    Meeder, Brendan
    Papalexakis, Evangelos E.
    Faloutsos, Christos
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (02) : 350 - 362
  • [10] Efficient Indexing of Billion-Scale datasets of deep descriptors
    Babenko, Artem
    Lempitsky, Victor
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2055 - 2063