Partial row-sums of Pascal's triangle

被引:1
|
作者
Ollerton, Richard L. a [1 ]
机构
[1] Univ Western Sydney, Sch Quantitat Methods & Math Sci, Kingswood, NSW 1797, Australia
关键词
D O I
10.1080/00207390600794800
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Formulae for binomial coefficient sums of the form are developed by use of generating functions.
引用
收藏
页码:124 / 127
页数:4
相关论文
共 50 条
  • [1] ROW AND RISING DIAGONAL SUMS FOR A TYPE OF PASCAL TRIANGLE
    SMITH, SW
    PRIEST, DB
    [J]. FIBONACCI QUARTERLY, 1977, 15 (04): : 359 - 361
  • [2] FINITE SUMS IN PASCAL'S TRIANGLE
    Sofo, A.
    [J]. FIBONACCI QUARTERLY, 2012, 50 (04): : 337 - 345
  • [3] On bounding the eigenvalues of matrices with constant row-sums
    Marsli, Rachid
    Hall, Frank J.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (04): : 672 - 684
  • [4] (0,1)-MATRICES WITH PRESCRIBED ROW-SUMS AND COLUMN-SUMS
    STANLEY, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (09): : 756 - 757
  • [5] Generating binomial coefficients in a row of Pascal's triangle from extensions of powers of eleven
    Islam, Md. Shariful
    Islam, Md. Robiul
    Hossan, Md. Shorif
    Kibria, Md. Hasan
    [J]. HELIYON, 2022, 8 (11)
  • [6] A Pascal-like triangle from finding power sums
    Chen, Zhibo
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2014, 45 (06) : 932 - 938
  • [7] The backbone of Pascal's triangle
    Baylis, John
    [J]. MATHEMATICAL GAZETTE, 2010, 94 (529): : 184 - 185
  • [8] Pascal's Triangle of Configurations
    Gevay, Gabor
    [J]. DISCRETE GEOMETRY AND SYMMETRY: DEDICATED TO KAROLY BEZDEK AND EGON SCHULTE ON THE OCCASION OF THEIR 60TH BIRTHDAYS, 2018, 234 : 181 - 199
  • [9] Extended Pascal's triangle
    Atanassov, Krassimir T.
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (01) : 55 - 58
  • [10] BEEBLEBROX,ZAPHOD BRAIN AND THE 59TH ROW OF PASCAL TRIANGLE
    GRANVILLE, A
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04): : 318 - 331