A NOTE ON MATRIX RIGIDITY

被引:44
|
作者
FRIEDMAN, J [1 ]
机构
[1] HEBREW UNIV JERUSALEM,JERUSALEM,ISRAEL
关键词
AMS subject classification code (1991): 05 B; 05; C; 68; Q; 94; B;
D O I
10.1007/BF01303207
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give an explicit construction of n x n matrices over finite fields which are somewhat rigid, in that if we change at most k entries in each row, its rank remains at least Cn(log(q) k)/k, where q is the size of the field and C is an absolute constant. Our matrices satisfy a somewhat stronger property, we will explain and call ''strong rigidity''. We introduce and briefly discuss strong rigidity, because it is in a sense a simpler property and may be easier to use in giving explicit construction.
引用
收藏
页码:235 / 239
页数:5
相关论文
共 50 条
  • [1] Matrix rigidity
    Codenotti, B
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 304 (1-3) : 181 - 192
  • [2] A note on local rigidity
    Bergeron, N
    Gelander, T
    [J]. GEOMETRIAE DEDICATA, 2004, 107 (01) : 111 - 131
  • [3] A Note on Local Rigidity
    N. Bergeron
    T. Gelander
    [J]. Geometriae Dedicata, 2004, 107 : 111 - 131
  • [4] Rigidity and lack of rigidity for solenoidal matrix fields
    Garroni, A
    Nesi, V
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 460 (2046): : 1789 - 1806
  • [5] A remark on matrix rigidity
    Shokrollahi, MA
    Spielman, DA
    Stemann, V
    [J]. INFORMATION PROCESSING LETTERS, 1997, 64 (06) : 283 - 285
  • [6] On the dual rigidity matrix
    Alfakih, A. Y.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (04) : 962 - 972
  • [7] A note on rigidity theorem of λ-hypersurfaces
    Wei, Guoxin
    Peng, Yejuan
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (06) : 1595 - 1601
  • [8] A note on the rigidity of Grauert tubes
    Kan, SJ
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2002, 546 : 155 - 158
  • [9] Note on quasisymmetric rigidity of carpets
    Sheng, Yahui
    Wei, Chun
    Wen, Fan
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2024, 353
  • [10] A NOTE ON RIGIDITY AND TRIANGULABILITY OF A DERIVATION
    Keshari, Manoj K.
    Lokhande, Swapnil A.
    [J]. JOURNAL OF COMMUTATIVE ALGEBRA, 2014, 6 (01) : 95 - 100