A NOTE ON MATRIX RIGIDITY

被引:46
|
作者
FRIEDMAN, J [1 ]
机构
[1] HEBREW UNIV JERUSALEM,JERUSALEM,ISRAEL
关键词
AMS subject classification code (1991): 05 B; 05; C; 68; Q; 94; B;
D O I
10.1007/BF01303207
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give an explicit construction of n x n matrices over finite fields which are somewhat rigid, in that if we change at most k entries in each row, its rank remains at least Cn(log(q) k)/k, where q is the size of the field and C is an absolute constant. Our matrices satisfy a somewhat stronger property, we will explain and call ''strong rigidity''. We introduce and briefly discuss strong rigidity, because it is in a sense a simpler property and may be easier to use in giving explicit construction.
引用
收藏
页码:235 / 239
页数:5
相关论文
共 50 条
  • [31] A NOTE ON RIGIDITY OF ANOSOV DIFFEOMORPHISMS OF THE THREE TORUS
    Micena, F.
    Tahzibi, A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (06) : 2453 - 2463
  • [32] A note on the n-point boundary rigidity
    Rong, Feng
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (04) : 1180 - 1186
  • [33] A NOTE ON QUESTIONNAIRE RIGIDITY AND EXTREME RESPONSE SET
    BRENGELMANN, JC
    JOURNAL OF MENTAL SCIENCE, 1960, 106 (442): : 187 - 192
  • [34] Quadratic lower bounds on matrix rigidity
    Lokam, Satyanarayana V.
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2006, 3959 : 295 - +
  • [35] Matrix Rigidity of Random Toeplitz Matrices
    Goldreich, Oded
    Tal, Avishay
    STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, : 91 - 104
  • [36] A note on generic rigidity of graphs in higher dimension
    Jordan, Tibor
    DISCRETE APPLIED MATHEMATICS, 2021, 297 : 97 - 101
  • [37] A note on rigidity of spacelike self-shrinkers
    Luo, Yong
    Qiu, Hongbing
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (05)
  • [38] Matrix rigidity of random Toeplitz matrices
    Oded Goldreich
    Avishay Tal
    computational complexity, 2018, 27 : 305 - 350
  • [39] The Orbit Rigidity Matrix of a Symmetric Framework
    Bernd Schulze
    Walter Whiteley
    Discrete & Computational Geometry, 2011, 46 : 561 - 598
  • [40] The Orbit Rigidity Matrix of a Symmetric Framework
    Schulze, Bernd
    Whiteley, Walter
    DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 46 (03) : 561 - 598