A remark on matrix rigidity

被引:37
|
作者
Shokrollahi, MA
Spielman, DA
Stemann, V
机构
[1] Int Comp Sci Inst, Berkeley, CA 94704 USA
[2] MIT, Cambridge, MA 02139 USA
关键词
computational complexity; theory of computation;
D O I
10.1016/S0020-0190(97)00190-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rigidity of a matrix is defined to be the number of entries in the matrix that have to be changed in order to reduce its rank below a certain value. Using a simple combinatorial Lemma, we show that one must alter at least c(n(2)/r)log(n/r) entries of an (n x n)-Cauchy matrix to reduce its rank below r, for some constant c. We apply our combinatorial lemma to matrices obtained from asymptotically good algebraic geometric codes to obtain a similar result for r satisfying 2n/(root q - 1) < r less than or equal to n/4. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:283 / 285
页数:3
相关论文
共 50 条