NUMERICAL CONFORMAL MAPPING OF CIRCULAR-ARC POLYGONS

被引:23
|
作者
HOWELL, LH [1 ]
机构
[1] LAWRENCE LIVERMORE NATL LAB,LIVERMORE,CA 94550
关键词
SCHWARZ-CHRISTOFFEL TRANSFORMATION; SCHWARZIAN; ORDINARY DIFFERENTIAL EQUATION; ELONGATED REGIONS; CROWDING; CONFORMAL MAPPING;
D O I
10.1016/0377-0427(93)90284-I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Solutions to the Schwarzian differential equation are conformal maps from the upper half-plane to circular arc polygons, plane regions bounded by straight line segments and arbitrary arcs of circles. We develop methods for numerically integrating this equation, both directly and through the use of a related linear differential equation. Particular attention is given to the behavior near corner singularities. We also derive alternate versions of the transformation which map from the unit disk and from an infinite strip. While the former may be of primarily theoretical interest, the latter can be used to map highly elongated regions such as channels for internal flow problems. Such regions are difficult or impossible to map from the disk or the half-plane due to the so-called crowding phenomenon.
引用
收藏
页码:7 / 28
页数:22
相关论文
共 50 条
  • [31] MATRIX CHARACTERIZATIONS OF CIRCULAR-ARC GRAPHS
    TUCKER, A
    PACIFIC JOURNAL OF MATHEMATICS, 1971, 39 (02) : 535 - &
  • [32] EFFICIENT TEST FOR CIRCULAR-ARC GRAPHS
    TUCKER, A
    SIAM JOURNAL ON COMPUTING, 1980, 9 (01) : 1 - 24
  • [33] PARALLEL ALGORITHMS ON CIRCULAR-ARC GRAPHS
    BERTOSSI, AA
    MORETTI, S
    INFORMATION PROCESSING LETTERS, 1990, 33 (06) : 275 - 281
  • [34] On the hyperbolicity constant of circular-arc graphs
    Reyes, Rosalio
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Villeta, Maria
    DISCRETE APPLIED MATHEMATICS, 2019, 263 : 244 - 256
  • [35] MINIMUM CUTS FOR CIRCULAR-ARC GRAPHS
    LEE, DT
    SARRAFZADEH, M
    WU, YF
    SIAM JOURNAL ON COMPUTING, 1990, 19 (06) : 1041 - 1050
  • [36] Power Domination in Circular-Arc Graphs
    Chung-Shou Liao
    D. T. Lee
    Algorithmica, 2013, 65 : 443 - 466
  • [37] PARALLEL ALGORITHMS ON CIRCULAR-ARC GRAPHS
    ANDREWS, MG
    LEE, DT
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1995, 5 (03): : 117 - 141
  • [38] ON CHORDAL PROPER CIRCULAR-ARC GRAPHS
    BANGJENSEN, J
    HELL, P
    DISCRETE MATHEMATICS, 1994, 128 (1-3) : 395 - 398
  • [39] On coherent configuration of circular-arc graphs
    Barandagh, Fatemeh Raei
    Barghi, Amir Rahnamai
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2025, 10 (01) : 1 - 19
  • [40] The Branch-width of circular-arc
    Mazoit, F
    LATIN 2006: THEORETICAL INFORMATICS, 2006, 3887 : 727 - 736