The Branch-width of circular-arc

被引:5
|
作者
Mazoit, F [1 ]
机构
[1] Univ Aix Marseille 1, LIF, F-13453 Marseille 13, France
来源
关键词
Branch-width; circular-arc graphs; algorithm;
D O I
10.1007/11682462_66
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that the branch-width of circular-arc graphs can be computed in polynomial time.
引用
收藏
页码:727 / 736
页数:10
相关论文
共 50 条
  • [1] Bounding branch-width
    Jowett, Susan
    Kaulamatoa, Jasmine Lulani
    Whittle, Geoff
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (03):
  • [2] Testing branch-width
    Oum, Sang-il
    Seymour, Paul
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (03) : 385 - 393
  • [3] Approximating clique-width and branch-width
    Oum, Sang-il
    Seymour, Paul
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (04) : 514 - 528
  • [4] Certifying Large Branch-width
    Oum, Sang-il
    Seymour, Paul
    PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, : 810 - +
  • [5] On matroids of branch-width three
    Hall, R
    Oxley, J
    Semple, C
    Whittle, G
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 86 (01) : 148 - 171
  • [6] From a Circular-Arc Model to a Proper Circular-Arc Model
    Nussbaum, Yahav
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2008, 5344 : 324 - 335
  • [7] Satisfiability, Branch-Width and Tseitin tautologies
    Michael Alekhnovich
    Alexander Razborov
    computational complexity, 2011, 20 : 649 - 678
  • [8] Branch-width and Rota's conjecture
    Geelen, J
    Whittle, G
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 86 (02) : 315 - 330
  • [9] Satisfiability, branch-width and Tseitin tautologies
    Alekhnovich, M
    Razborov, AA
    FOCS 2002: 43RD ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2002, : 593 - 603
  • [10] A parametrized algorithm for matroid branch-width
    Hlineny, P
    SIAM JOURNAL ON COMPUTING, 2005, 35 (02) : 259 - 277