Bivariate generalization of q-Bernstein-Kantorovich type operator

被引:3
|
作者
Sharma, Preeti [1 ,2 ]
Mishra, Vishnu Narayan [1 ,3 ]
机构
[1] Sardar Vallabhbhai Natl Inst Technol, Dept Appl Math & Humanities, Ichchhanath Mahadev Dumas Rd, Surat 395007, Gujarat, India
[2] Banasthali Univ, Dept Appl Math & Stat, Tonk, Rajasthan, India
[3] L 1627 Awadh Puri Colony Beniganj,Phase 3, Faizabad 224001, Uttar Pradesh, India
来源
COGENT MATHEMATICS | 2016年 / 3卷
关键词
q-analysis; q-integral operator; positive linear operators; q-Bernstein operators; modulus of continuity;
D O I
10.1080/23311835.2016.1160587
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a generalization of the Kantorovich-type Bernstein operators based on q-integers and get a Bohman-Korovkin-type approximation theorem of these operators. We also compute the rate of convergence using the first modulus of smoothness.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] APPROXIMATION PROPERTIES OF MODIFIED KANTOROVICH TYPE (p, q)-BERNSTEIN OPERATORS
    Yu, Kan
    Cheng, Wentao
    Fan, Ligang
    Zhou, Xiaoling
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 547 - 558
  • [32] On statistical approximation properties of Kantorovich type q-Bernstein operators
    Dalmanoglu, Oezge
    Dogru, Oguen
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) : 760 - 771
  • [33] Generalization of the Kantorovich type operator inequalities via grand Furuta inequality
    Micic, Jadranka
    Pecaric, Josip
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2006, 9 (03): : 495 - 510
  • [34] Results on Bivariate Modified (p,q)-Bernstein Type Operators
    Bilgin, Nazmiye Gonul
    Eren, Melis
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2023, 36 (02): : 845 - 860
  • [35] PARAMETRIC GENERALIZATION OF THE MODIFIED BERNSTEIN-KANTOROVICH OPERATORS
    Kanat, Kadir
    Sofyalioglu, Melek
    Erdal, Selin
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (02): : 460 - 473
  • [36] ON THE BIVARIATE GENERALIZATION OF BERNSTEIN-FOMIN OPERATORS
    Ghorbanalizadeh, Arash
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2018, 44 (02): : 209 - 221
  • [37] On Kantorovich Modification of (p, q)-Bernstein Operators
    Acar, Tuncer
    Aral, Ali
    Mohiuddine, S. A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A3): : 1459 - 1464
  • [38] On Kantorovich Modification of (p, q)-Bernstein Operators
    Tuncer Acar
    Ali Aral
    S. A. Mohiuddine
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 1459 - 1464
  • [39] q-Bernstein-Schurer-Kantorovich Operators
    Ozarslan, Mehmet Ali
    Vedi, Tuba
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [40] On (p, q)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators
    Cai, Qing-Bo
    Zhou, Guorong
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 : 12 - 20