PARAMETRIC GENERALIZATION OF THE MODIFIED BERNSTEIN-KANTOROVICH OPERATORS

被引:0
|
作者
Kanat, Kadir [1 ]
Sofyalioglu, Melek [1 ]
Erdal, Selin [1 ]
机构
[1] Ankara Haci Bayram Veli Univ, Dept Math, Ankara, Turkiye
关键词
Bernstein-Kantorovich operators; Peetre- K functional; modulus of continuity; Lipschitz class;
D O I
10.31801/cfsuasmas.1338789
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the current article, a parametrization of the modified BernsteinKantorovich operators is studied. Then the Korovkin theorem, approximation properties and central moments of these operators are investigated. The rate of approximation of the operators is obtained by the help of modulus of continuity, functions from Lipschitz class and Peetre- K functional. Finally, some numerical examples are illustrated to show the effectiveness of the newly defined operators.
引用
收藏
页码:460 / 473
页数:14
相关论文
共 50 条
  • [1] α-Bernstein-Kantorovich operators
    Deo, Naokant
    Pratap, Ram
    AFRIKA MATEMATIKA, 2020, 31 (3-4) : 609 - 618
  • [2] Smoothness Properties of Modified Bernstein-Kantorovich Operators
    Ozarslan, Mehmet Ali
    Duman, Oktay
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (01) : 92 - 105
  • [3] ψ-Bernstein-Kantorovich operators
    Aktuglu, Huseyin
    Kara, Mustafa
    Baytunc, Erdem
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 1124 - 1141
  • [4] Convergence analysis of modified Bernstein-Kantorovich type operators
    Senapati, Abhishek
    Kumar, Ajay
    Som, Tanmoy
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (07) : 3749 - 3764
  • [5] BERNSTEIN-KANTOROVICH OPERATORS ON A SIMPLEX
    Li Song (Zhejiang University
    Approximation Theory and Its Applications, 1995, (03) : 11 - 21
  • [6] Modified Bernstein-Kantorovich Operators Reproducing Affine Functions
    Zhang, Bin
    Yu, Dansheng
    Wang, Fengfeng
    FILOMAT, 2022, 36 (18) : 6187 - 6195
  • [7] Higher order α-Bernstein-Kantorovich operators
    Yadav, Jyoti
    Braha, Naim L.
    Kajla, Arun
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (03) : 2387 - 2403
  • [8] Derivatives of Bernstein-Kantorovich operators and smoothness
    Jiang, Hong-Biao
    Jishou Daxue Xuebao/Journal of Jishou University, 2003, 24 (01):
  • [9] Bernstein-Kantorovich Operators on Multidimensional Cube
    Stan, G.
    FILOMAT, 2016, 30 (05) : 1219 - 1232
  • [10] Parametric Generalization of the Modified Bernstein Operators
    Sofyalioglu, Melek
    Kanat, Kadir
    Cekim, Bayram
    FILOMAT, 2022, 36 (05) : 1699 - 1709