GRAPHS WHICH ARE LOCALLY GRASSMANN

被引:8
|
作者
WEISS, RW
机构
[1] Department of Mathematics, Tufts University, Medford, 02155, MA
关键词
Mathematics Subject Classification (1991): 20E08; 20F32;
D O I
10.1007/BF01459505
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:325 / 334
页数:10
相关论文
共 50 条
  • [31] Cores and Independence Numbers of Grassmann Graphs
    Li-Ping Huang
    Benjian Lv
    Graphs and Combinatorics, 2017, 33 : 1607 - 1620
  • [32] Top stars and isomorphisms of Grassmann graphs
    Plevnik L.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2015, 56 (2): : 703 - 728
  • [33] Cores and Independence Numbers of Grassmann Graphs
    Huang, Li-Ping
    Lv, Benjian
    GRAPHS AND COMBINATORICS, 2017, 33 (06) : 1607 - 1620
  • [34] Characterization of isometric embeddings of Grassmann graphs
    Pankov, Mark
    ADVANCES IN GEOMETRY, 2014, 14 (01) : 91 - 108
  • [35] On the automorphism group of doubled Grassmann graphs
    Meysam Ziaee
    Proceedings - Mathematical Sciences, 2020, 130
  • [36] Finite s-Geodesic Transitive Graphs Which Are Locally Disconnected
    Wei Jin
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 909 - 919
  • [37] Finite s-Geodesic Transitive Graphs Which Are Locally Disconnected
    Jin, Wei
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (03) : 909 - 919
  • [38] On the automorphism group of doubled Grassmann graphs
    Ziaee, Meysam
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2020, 130 (01):
  • [39] DETERMINATION OF GRASSMANN MANIFOLDS WHICH ARE BOUNDARIES
    SANKARAN, P
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1991, 34 (01): : 119 - 122
  • [40] Two-geodesic-transitive graphs which are locally self-complementary
    Jin, Wei
    Tan, Li
    DISCRETE MATHEMATICS, 2022, 345 (08)