Two-geodesic-transitive graphs which are locally self-complementary

被引:0
|
作者
Jin, Wei [1 ,2 ]
Tan, Li [1 ,3 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Stat, Nanchang 330013, Jiangxi, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410075, Hunan, Peoples R China
[3] Jiangxi Univ Finance & Econ, Res Ctr Appl Stat, Nanchang 330013, Jiangxi, Peoples R China
关键词
Two-geodesic-transitive graph; arc-Transitive graph; Local subgraph; Self-complementary; PRIMITIVE PERMUTATION-GROUPS; TRANSITIVE GRAPHS; FINITE; RANK;
D O I
10.1016/j.disc.2022.112900
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A 2-geodesic of a graph is a vertex triple (u, v, w) with vadjacent to both uand w, u not equal w and u, ware not adjacent. A graph is said to be 2-geodesic-transitive if its automorphism group is transitive on both the set of arcs and the set of 2-geodesics. In this paper, we first determine the family of 2-geodesic-transitive graphs which are locally self-complementary, and then classify the family of 2-geodesic-transitive graphs that the local subgraph induced by the neighbor of a vertex is an arc-transitive circulant. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条