RINGS WITH X(YZ) = Z(YX)

被引:3
|
作者
KLEINFELD, MH
机构
关键词
D O I
10.1080/00927877808822295
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1369 / 1373
页数:5
相关论文
共 50 条
  • [1] RINGE MIT X(YZ)=(YX)Z
    THEDY, A
    MATHEMATISCHE ZEITSCHRIFT, 1967, 99 (05) : 400 - &
  • [2] RINGS WITH X(YZ)=Y(ZX)
    KLEINFELD, M
    COMMUNICATIONS IN ALGEBRA, 1995, 23 (13) : 5085 - 5093
  • [3] Predictions for the X(YZ) and X(YZ) with X(4160), Y(3940), Z(3930)
    Liang, Wei-Hong
    Molina, R.
    Xie, Ju-Jun
    Doering, M.
    Oset, E.
    EUROPEAN PHYSICAL JOURNAL A, 2015, 51 (05):
  • [4] Rings with (x,y,z) = (x,z,y)
    Kleinfeld, E
    Kleinfeld, M
    NONASSOCIATIVE ALGEBRA AND ITS APPLICATIONS, 2000, 211 : 177 - 179
  • [5] Right alternative rings with x(yz)-y(xz) in the center
    School of Advanced Sciences, VIT University, Vellore
    Tamilnadu
    632014, India
    不详
    Andhra Pradesh
    515002, India
    Reddy, K. Madhusudhan, 1600, Forum-Editrice Universitaria Udinese SRL (32):
  • [6] RIGHT ALTERNATIVE RINGS WITH x(yz)-y(xz) IN THE CENTER
    Reddy, K. Madhusudhan
    Suvarna, K.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (32): : 415 - 424
  • [7] RINGS SATISFYING (X,Y,Z)=(Y,Z,X)
    KLEINFELD, E
    WIDMER, L
    COMMUNICATIONS IN ALGEBRA, 1989, 17 (11) : 2683 - 2687
  • [8] RINGS SATISFYING (X,Y,Z) = (Y,Z,X)
    STERLING, NJ
    CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (04): : 913 - &
  • [9] Semiprimality and nilpotency of nonassociative rings satisfying x(yz) = y(zx)
    Behn, Antonio
    Correa, Ivan
    Hentzel, Irvin Roy
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (01) : 132 - 141
  • [10] Rings with (x, y, z) - (z, y, x) in the right nucleus
    Jayalakshmi, K.
    Nageswari, G.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (02)