RINGS WITH X(YZ) = Z(YX)

被引:3
|
作者
KLEINFELD, MH
机构
关键词
D O I
10.1080/00927877808822295
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1369 / 1373
页数:5
相关论文
共 50 条
  • [31] Electronic structure and magnetic properties of YX′CrZ (X′ = Fe, Co, Ni; Z = Al,Ga, In) quaternary Heusler alloys
    Dharmaraja, P.
    Amudhavalli, A.
    Santhosh, M.
    Palanichamy, R. R.
    Manikandan, M.
    Iyakutti, K.
    INDIAN JOURNAL OF PHYSICS, 2023, 97 (03) : 733 - 749
  • [32] ANALYTIC SOLUTIONS OF THE FUNCTIONAL-EQUATION (XY)X=X(YX)
    SHELEKHOV, AM
    MATHEMATICAL NOTES, 1991, 50 (3-4) : 1073 - 1078
  • [33] Electronic structure and magnetic properties of YX′CrZ (X′ = Fe, Co, Ni; Z = Al,Ga, In) quaternary Heusler alloys
    P. Dharmaraja
    A. Amudhavalli
    M. Santhosh
    R. Rajeswara Palanichamy
    M. Manikandan
    K. Iyakutti
    Indian Journal of Physics, 2023, 97 : 733 - 749
  • [34] ALGEBRAS SATISFYING IDENTITY (YX)X+X(XY)=2(XY)X
    CHAFFER, RA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 31 (02) : 376 - +
  • [35] On Z-Reversible Rings
    Chaturvedi, Avanish Kumar
    Kumar, Nirbhay
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (04) : 555 - 562
  • [36] On Z-Symmetric Rings
    Chaturvedi, Avanish Kumar
    Kumar, Nirbhay
    Shum, K. P.
    MATHEMATICA SLOVACA, 2021, 71 (06) : 1361 - 1374
  • [37] Pure subrings of the rings Zχ
    Tsarev, A. V.
    SBORNIK MATHEMATICS, 2009, 200 (9-10) : 1537 - 1563
  • [38] Rings which are residually Z
    Chiswell, IM
    MATHEMATIKA, 1999, 46 (91) : 175 - 183
  • [39] CONSTRUCTION OF QUASIGROUPS SATISFYING IDENTITY X(XY)=YX
    LINDNER, CC
    CANADIAN MATHEMATICAL BULLETIN, 1971, 14 (01): : 57 - &
  • [40] COMMUTATIVE FINITELY GENERATED ALGEBRAS SATISFYING ((yx)x)x=0 ARE SOLVABLE
    Correa, Ivan
    Hentzel, Irvin Roy
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (03) : 757 - 764