Right alternative rings with x(yz)-y(xz) in the center

被引:0
|
作者
School of Advanced Sciences, VIT University, Vellore [1 ]
Tamilnadu
632014, India
不详 [2 ]
Andhra Pradesh
515002, India
机构
[1] Reddy, K. Madhusudhan
[2] Suvarna, K.
来源
Reddy, K. Madhusudhan | 1600年 / Forum-Editrice Universitaria Udinese SRL卷 / 32期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] RIGHT ALTERNATIVE RINGS WITH x(yz)-y(xz) IN THE CENTER
    Reddy, K. Madhusudhan
    Suvarna, K.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (32): : 415 - 424
  • [2] RINGS WITH X(YZ)=Y(ZX)
    KLEINFELD, M
    COMMUNICATIONS IN ALGEBRA, 1995, 23 (13) : 5085 - 5093
  • [3] Semiprimality and nilpotency of nonassociative rings satisfying x(yz) = y(zx)
    Behn, Antonio
    Correa, Ivan
    Hentzel, Irvin Roy
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (01) : 132 - 141
  • [4] SHIMS X, Y, XZ, YZ IN THE FORM ON FLAT CONDUCTORS OF NMR RADIOSPECTROMETERS OF HIGH-RESOLUTION
    LUKHVICH, AA
    CHURILO, VR
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1978, 21 (04) : 1032 - 1034
  • [5] Rings with (x, y, z) - (z, y, x) in the right nucleus
    Jayalakshmi, K.
    Nageswari, G.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (02)
  • [6] SEMIPRIME RIGHT ALTERNATIVE RINGS WITH DOUBLE COMMUTATORS IN THE CENTER
    KLEINFELD, M
    HOUSTON JOURNAL OF MATHEMATICS, 1993, 19 (02): : 319 - 324
  • [7] RINGS WITH X(YZ) = Z(YX)
    KLEINFELD, MH
    COMMUNICATIONS IN ALGEBRA, 1978, 6 (13) : 1369 - 1373
  • [8] Flexible right-nilalge bras satisfying x(yz) = y(zx)
    Correa, I
    Non-Associative Algebra and Its Applications, 2006, 246 : 103 - 107
  • [9] 不定方程x+y+z=2(xy+yz+xz)的解及其性质
    李高
    常秀芳
    山西大同大学学报(自然科学版), 2011, 27 (03) : 6 - 7+10
  • [10] Predictions for the X(YZ) and X(YZ) with X(4160), Y(3940), Z(3930)
    Liang, Wei-Hong
    Molina, R.
    Xie, Ju-Jun
    Doering, M.
    Oset, E.
    EUROPEAN PHYSICAL JOURNAL A, 2015, 51 (05):