Gravity duals of supersymmetric SU(N) x SU(N + M) gauge theories

被引:445
|
作者
Klebanov, IR [1 ]
Tseytlin, AA
机构
[1] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA
[2] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[3] Univ London Imperial Coll Sci Technol & Med, London, England
[4] Lebedev Phys Inst, Moscow, Russia
基金
美国国家科学基金会;
关键词
supersymmetric Yang-Mills theory; renormalization group; string theory; threebranes; geometrical singularities; anti-de Sitter space;
D O I
10.1016/S0550-3213(00)00206-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The world volume theory on N regular and M fractional D3-branes at the conifold singularity is a non-conformal N = 1 supersymmetric SU(N + M) x SU(N) gauge theory. In previous work the Type IIB supergravity dual of this theory was constructed to leading non-trivial order in MIN: it is the AdS(5) x T-1,T-1 background with NS-NS and R-R 2-form fields turned on.-Far in the UV this dual description was shown to reproduce the logarithmic flow of couplings found in the field theory. In this paper we study the supersymmetric RG flow at all scales. We introduce an ansatz for the 10-d metric and other fields and show that the equations of motion may be derived in first order form from a simple superpotential. This allows us to explicitly solve for the gravity dual of the RG trajectory. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:123 / 138
页数:16
相关论文
共 50 条
  • [21] Noninvertible anomalies in SU(N) x U(1) gauge theories
    Anber, Mohamed M.
    Poppitz, Erich
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (08)
  • [22] New S-dualities in N=2 supersymmetric SU(2) x SU(2) gauge theory
    Argyres, PC
    Buchel, A
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 1999, (11):
  • [23] Classification of gauge orbit types for SU(n)-gauge theories
    Rudolph, G
    Schmidt, M
    Volobuev, IP
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2002, 5 (03) : 201 - 241
  • [24] Classification of Gauge Orbit Types for SU(n)-Gauge Theories
    G. Rudolph
    M. Schmidt
    I. P. Volobuev
    [J]. Mathematical Physics, Analysis and Geometry, 2002, 5 : 201 - 241
  • [25] ON THE QUANTUM MODULI SPACE OF VACUA OF N=2 SUPERSYMMETRIC SU(N-C) GAUGE-THEORIES
    HANANY, A
    OZ, Y
    [J]. NUCLEAR PHYSICS B, 1995, 452 (1-2) : 283 - 312
  • [26] The running of the coupling in SU(N) pure gauge theories
    Lucini, Biagio
    Moraitis, Gregory
    [J]. PHYSICS LETTERS B, 2008, 668 (03) : 226 - 232
  • [27] Evidence for a conformal phase in SU(N) gauge theories
    Deuzeman, A.
    Lombardo, M. P.
    Pallante, E.
    [J]. PHYSICAL REVIEW D, 2010, 82 (07):
  • [28] Free energy and θ dependence of SU(N) gauge theories
    Del Debbio, L
    Panagopoulos, H
    Vicari, E
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 119 : 661 - 663
  • [29] SU(N) gauge theories in the presence of a topological term
    Del Debbio, Luigi
    Panagopoulos, Haralambos
    Vicari, Ettore
    [J]. 2007 EUROPHYSICS CONFERENCE ON HIGH ENERGY PHYSICS, PTS 1-12, 2008, 110
  • [30] Dynamics and symmetries in chiral SU(N) gauge theories
    Bolognesi, Stefano
    Konishi, Kenichi
    [J]. PHYSICAL REVIEW D, 2019, 100 (11)