Classification of gauge orbit types for SU(n)-gauge theories

被引:8
|
作者
Rudolph, G
Schmidt, M
Volobuev, IP
机构
[1] Univ Leipzig, Inst Theoret Phys, D-04109 Leipzig, Germany
[2] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow 119899, Russia
关键词
classification; gauge orbit space; nongeneric strata; orbit types; quantum nodes; stratification;
D O I
10.1023/A:1020968206969
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method for determining the orbit types of the action of the group of gauge transformations on the space of connections for gauge theories with gauge group SU(n) in spacetime dimension d less than or equal to 4 is presented. The method is based on the one-to-one correspondence between orbit types and holonomy-induced reductions of the underlying principal SU(n)-bundle. It is shown that the orbit types are labelled by certain cohomology elements of spacetime satisfying two relations. Thus, for every principal SU(n)-bundle the corresponding stratification of the gauge orbit space can be explicitly determined. As an application, a criterion characterizing kinematical nodes for physical states in Yang-Mills theory with the Chern-Simons term proposed by Asorey et al. is discussed.
引用
收藏
页码:201 / 241
页数:41
相关论文
共 50 条
  • [1] Classification of Gauge Orbit Types for SU(n)-Gauge Theories
    G. Rudolph
    M. Schmidt
    I. P. Volobuev
    [J]. Mathematical Physics, Analysis and Geometry, 2002, 5 : 201 - 241
  • [2] Gauge Orbit Types for Theories with Gauge Group O(n), SO(n) or Sp(n)
    Hertsch, Alexander
    Rudolph, Gerd
    Schmidt, Matthias
    [J]. ANNALES HENRI POINCARE, 2011, 12 (02): : 351 - 395
  • [3] Gauge Orbit Types for Theories with Gauge Group O(n), SO(n) or Sp(n)
    Alexander Hertsch
    Gerd Rudolph
    Matthias Schmidt
    [J]. Annales Henri Poincaré, 2011, 12 : 351 - 395
  • [4] SU(N)-gauge theories in Polyakov gauge on the torus
    Ford, C
    Tok, T
    Wipf, A
    [J]. PHYSICS LETTERS B, 1999, 456 (2-4) : 155 - 161
  • [5] ON THE GAUGE ORBIT TYPES FOR THEORIES WITH CLASSICAL COMPACT GAUGE GROUP
    Hertsch, A.
    Rudolph, G.
    Schmidt, M.
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2010, 66 (03) : 331 - 353
  • [6] θ = π SU(N)/ZN gauge theories
    Kitano, Ryuichiro
    Suyama, Takao
    Yamada, Norikazu
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (09):
  • [7] Features of SU(N) gauge theories
    Lucini, B
    Teper, M
    Wenger, U
    [J]. INTERNATIONAL CONFERENCE ON COLOR CONFINEMENT AND HADRONS IN QUANTUM CHROMODYNAMICS, 2004, : 433 - 438
  • [8] Partial ordering of gauge orbit types for SUn-gauge theories
    Rudolph, G
    Schmidt, M
    Volobuev, IP
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2002, 42 (1-2) : 106 - 138
  • [9] SU(N) gauge theories at large N
    Lucini, Biagio
    Panero, Marco
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2013, 526 (02): : 93 - 163
  • [10] θ dependence of the spectrum of SU(N) gauge theories
    Del Debbio, Luigi
    Manca, Gian Mario
    Panagopoulos, Haralambos
    Skouroupathis, Apostolos
    Vicari, Ettore
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2006, (06):