CHARACTERIZATION OF A CLASS OF TRIANGLE-FREE GRAPHS WITH A CERTAIN ADJACENCY PROPERTY

被引:4
|
作者
ALSPACH, B [1 ]
CHEN, CC [1 ]
HEINRICH, K [1 ]
机构
[1] NATL UNIV SINGAPORE,DEPT MATH,SINGAPORE 0511,SINGAPORE
关键词
D O I
10.1002/jgt.3190150404
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m and n be nonnegative integers. Denote by P(m,n) the set of all triangle-free graphs G such that for any independent m-subset M and any n-subset N of V(G) with M intersect N = empty-set, there exists a unique vertex of G that is adjacent to each vertex in M and nonadjacent to any vertex in N. We prove that if m greater-than-or-equal-to 2 and n greater-than-or-equal-to 1, then P(m,n) = empty-set whenever m less-than-or-equal-to n, and P(m,n) = {K(m,n + 1)} whenever m > n. We also have P(1,1) = {C5} and P(1,n) = empty-set for n greater-than-or-equal-to 2. In the degenerate cases, the class P(0,n) is completely determined, whereas the class P(m,0), which is most interesting, being rich in graphs, is partially determined.
引用
收藏
页码:375 / 388
页数:14
相关论文
共 50 条
  • [1] A characterization of triangle-free tolerance graphs
    Busch, AH
    [J]. DISCRETE APPLIED MATHEMATICS, 2006, 154 (03) : 471 - 477
  • [2] Triangle-free commuting conjugacy class graphs
    Mohammadian, Abbas
    Erfanian, Ahmad
    Farrokhi, Mohammad D. G.
    Wilkens, Bettina
    [J]. JOURNAL OF GROUP THEORY, 2016, 19 (06) : 1049 - 1061
  • [3] Certificates of factorisation for a class of triangle-free graphs
    Morgan, Kerri
    Farr, Graham
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [4] A Class of Three-Colorable Triangle-Free Graphs
    Radovanovic, Marko
    Vuskovic, Kristina
    [J]. JOURNAL OF GRAPH THEORY, 2013, 72 (04) : 430 - 439
  • [5] Median graphs and triangle-free graphs
    Imrich, W
    Klavzar, S
    Mulder, HM
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (01) : 111 - 118
  • [6] Triangle-free equimatchable graphs
    Buyukcolak, Yasemin
    Ozkan, Sibel
    Gozupek, Didem
    [J]. JOURNAL OF GRAPH THEORY, 2022, 99 (03) : 461 - 484
  • [7] On triangle-free random graphs
    Luczak, T
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2000, 16 (03) : 260 - 276
  • [8] On triangle-free projective graphs
    Hazan, S
    [J]. ALGEBRA UNIVERSALIS, 1996, 35 (02) : 185 - 196
  • [9] ON MAXIMAL TRIANGLE-FREE GRAPHS
    ERDOS, P
    HOLZMAN, R
    [J]. JOURNAL OF GRAPH THEORY, 1994, 18 (06) : 585 - 594
  • [10] On the evolution of triangle-free graphs
    Steger, A
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (1-2): : 211 - 224