AFFINE CHARACTERIZATION OF THE CARDAN MOTIONS

被引:0
|
作者
TOLKE, J
机构
来源
MONATSHEFTE FUR MATHEMATIK | 1978年 / 86卷 / 02期
关键词
D O I
10.1007/BF01320208
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:167 / 170
页数:4
相关论文
共 50 条
  • [21] Affine and nonaffine motions in sheared polydisperse emulsions
    Clara-Rahola, J.
    Brzinski, T. A.
    Semwogerere, D.
    Feitosa, K.
    Crocker, J. C.
    Sato, J.
    Breedveld, V.
    Weeks, Eric R.
    PHYSICAL REVIEW E, 2015, 91 (01):
  • [22] On affine motions and universal rigidity of tensegrity frameworks
    Alfakih, A. Y.
    Viet-Hang Nguyen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 3134 - 3147
  • [23] Affine description of multiple motions in compressed domain
    Felip, RL
    Binefa, X
    RECENT ADVANCES IN ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2004, 113 : 93 - 100
  • [24] On affine motions and bar frameworks in general position
    Alfakih, A. Y.
    Ye, Yinyu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (01) : 31 - 36
  • [25] ERRORS IN SIMULATED VERTEBRAL MOTIONS USING CARDAN EULER ANGLES WITH A LEAST-SQUARES METHOD
    PLAMONDON, A
    GAGNON, M
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1992, 114 (02): : 260 - 262
  • [26] Estimation of stabilisation domains for program motions of affine systems
    Krishchenko, AP
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 947 - 950
  • [27] IF B AND f (B) ARE BROWNIAN MOTIONS, THEN f IS AFFINE
    Tehranchi, Michael R.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (03) : 947 - 953
  • [28] Ermakov system and plane curve motions in affine geometries
    Qu, CZ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 43 (02) : 201 - 204
  • [29] Ermakov System and Plane Curve Motions in Affine Geometries
    QU Chang-ZhengCenter for Nonlinear Studies
    Communications in Theoretical Physics, 2005, 43 (02) : 201 - 204
  • [30] CHARACTERIZATION OF AFFINE OPENED INTERVALS OF AN AFFINE SCHEME
    MARTIN, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 273 (01): : 38 - &