On affine motions and bar frameworks in general position

被引:14
|
作者
Alfakih, A. Y. [1 ]
Ye, Yinyu [2 ]
机构
[1] Univ Windsor, Dept Math & Stat, Windsor, ON N9B 3P4, Canada
[2] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Bar frameworks; Universal rigidity; Stress matrices; Points in general position; Gale transform; RIGIDITY;
D O I
10.1016/j.laa.2012.08.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A configuration p in r-dimensional Euclidean space is a finite collection of points (p(1), ... , p(n)) that affinely span R-r. A bar framework. denoted by G(p), in R-r is a simple graph G on n vertices together with a configuration p in R-r. A given bar framework G(p) is said to be universally rigid if there does not exist another configuration q in any Euclidean space, not obtained from p by a rigid motion, such that vertical bar vertical bar q(i) - q(j)vertical bar vertical bar = vertical bar vertical bar p(i) - p(j)vertical bar vertical bar for each edge (i, j) of G. It is known [2,7] that if configuration p is generic and bar framework G(p) in R-r admits a positive semidefinite stress matrix S of rank (n - r - 1). then G(p) is universally rigid. Connelly asked [9] whether the same result holds true if the genericity assumption of p is replaced by the weaker assumption of general position. We answer this question in the affirmative in this paper. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 50 条
  • [1] On affine motions and universal rigidity of tensegrity frameworks
    Alfakih, A. Y.
    Viet-Hang Nguyen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 3134 - 3147
  • [2] THE ALGEBRAIC-GEOMETRY OF MOTIONS OF BAR-AND-BODY FRAMEWORKS
    WHITE, N
    WHITELEY, W
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1987, 8 (01): : 1 - 32
  • [3] AFFINE DARBOUX MOTIONS
    KARGER, A
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1985, 35 (03) : 355 - 372
  • [4] On stress matrices of (d + 1)-lateration frameworks in general position
    A. Y. Alfakih
    Nicole Taheri
    Yinyu Ye
    Mathematical Programming, 2013, 137 : 1 - 17
  • [5] AFFINE CHARACTERIZATION OF THE CARDAN MOTIONS
    TOLKE, J
    MONATSHEFTE FUR MATHEMATIK, 1978, 86 (02): : 167 - 170
  • [6] SPATIALLY AFFINE MOTIONS IN RELATIVITY
    BEL, L
    LLOSA, J
    CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (08) : 1949 - 1967
  • [7] Steady Affine Motions and Morphs
    Rossignac, Jarek
    Vinacua, Alvar
    ACM TRANSACTIONS ON GRAPHICS, 2011, 30 (05):
  • [8] THE BAR CONSTRUCTION AND AFFINE STACKS
    Olsson, Martin
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (07) : 3088 - 3121
  • [9] On stress matrices of (d+1)-lateration frameworks in general position
    Alfakih, A. Y.
    Taheri, Nicole
    Ye, Yinyu
    MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) : 1 - 17
  • [10] Minimizing the distortion of affine spline motions
    Hyun, DE
    Jüttler, B
    Kim, MS
    GRAPHICAL MODELS, 2002, 64 (02) : 128 - 144