On discretization of methods for localization of singularities a noisy function

被引:0
|
作者
Ageev, A. L. [1 ,2 ]
Antonova, T. V. [3 ,4 ]
机构
[1] Russian Acad Sci, Inst Math & Mech, Ural Branch, Phys Mat Sci, Moscow, Russia
[2] Russian Acad Sci, Inst Math & Mech, Ural Branch, Moscow, Russia
[3] Ural Fed Univ, Phys Mat Sci, Ekaterinburg, Russia
[4] Ural Fed Univ, Ekaterinburg, Russia
来源
关键词
ill-posed problem; discontinuity of the first kind; localization of singularities; regularizing method; discretization;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Ill-posed problems of localizing the singularities of a noisy function of one or two variables are studied. For functions of one variable, singularities are discontinuities of the first kind; for a function of two variables, singularities are lines of discontinuity. The discretization of regular localization methods is investigated. Correctness classes are introduced, and error estimates are obtained for the approximation of singularities and separability threshold of the constructed algorithms. It is shown that discrete algorithms for localizing discontinuities of the first kind of a noisy function of one variable are order-optimal.
引用
收藏
页码:3 / 13
页数:11
相关论文
共 50 条
  • [31] SINGULARITIES IN LIKELIHOOD FUNCTION
    BARNARD, GA
    AMERICAN STATISTICIAN, 1974, 28 (04): : 162 - 162
  • [32] PARTITION FUNCTION WITH SINGULARITIES
    FULINSKI, A
    PHYSICS LETTERS A, 1967, A 25 (08) : 585 - &
  • [33] Singularities of the minimax function
    Zhukovskaya, TA
    RUSSIAN MATHEMATICAL SURVEYS, 1996, 51 (02) : 359 - 360
  • [34] LOCALIZATION AND SPECTRAL SINGULARITIES IN RANDOM CHAINS
    ZIMAN, TAL
    PHYSICAL REVIEW LETTERS, 1982, 49 (05) : 337 - 340
  • [35] Pseudodifferential operators on manifolds with singularities and localization
    Nazaikinskii, VE
    Savin, AY
    Sternin, BY
    Schulze, BW
    DOKLADY MATHEMATICS, 2005, 71 (03) : 457 - 460
  • [36] On the Entropy of a Noisy Function
    Samorodnitsky, Alex
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (10) : 5446 - 5464
  • [37] Localization of nanoscale objects with light singularities
    Grant, Thomas A.
    Vetlugin, Anton N.
    Plum, Eric
    Macdonald, Kevin F.
    Zheludev, Nikolay I.
    NANOPHOTONICS, 2025, 14 (07) : 915 - 920
  • [38] NONPARAMETRIC-ESTIMATION OF THE SINGULARITIES OF A SIGNAL FROM NOISY MEASUREMENTS
    KATSEVICH, AI
    RAMM, AG
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (04) : 1221 - 1234
  • [39] Capacity of a Noisy Function
    Simon, Francois
    2010 IEEE INFORMATION THEORY WORKSHOP (ITW), 2010,
  • [40] Noisy Localization on the Sphere: A Preliminary Study
    Yu, Changbin
    Chee, Hongyi
    Anderson, Brian D. O.
    ISSNIP 2008: PROCEEDINGS OF THE 2008 INTERNATIONAL CONFERENCE ON INTELLIGENT SENSORS, SENSOR NETWORKS, AND INFORMATION PROCESSING, 2008, : 43 - +