On discretization of methods for localization of singularities a noisy function

被引:0
|
作者
Ageev, A. L. [1 ,2 ]
Antonova, T. V. [3 ,4 ]
机构
[1] Russian Acad Sci, Inst Math & Mech, Ural Branch, Phys Mat Sci, Moscow, Russia
[2] Russian Acad Sci, Inst Math & Mech, Ural Branch, Moscow, Russia
[3] Ural Fed Univ, Phys Mat Sci, Ekaterinburg, Russia
[4] Ural Fed Univ, Ekaterinburg, Russia
来源
关键词
ill-posed problem; discontinuity of the first kind; localization of singularities; regularizing method; discretization;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Ill-posed problems of localizing the singularities of a noisy function of one or two variables are studied. For functions of one variable, singularities are discontinuities of the first kind; for a function of two variables, singularities are lines of discontinuity. The discretization of regular localization methods is investigated. Correctness classes are introduced, and error estimates are obtained for the approximation of singularities and separability threshold of the constructed algorithms. It is shown that discrete algorithms for localizing discontinuities of the first kind of a noisy function of one variable are order-optimal.
引用
收藏
页码:3 / 13
页数:11
相关论文
共 50 条
  • [21] Methods for Classification of Singularities
    Damon, James
    Giblin, Peter
    Haslinger, Gareth
    LOCAL FEATURES IN NATURAL IMAGES VIA SINGULARITY THEORY, 2016, 2165 : 73 - 99
  • [22] Study on Comparison of Discretization Methods
    Liu Peng
    Wang Qing
    Gu Yujia
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL IV, PROCEEDINGS, 2009, : 380 - 384
  • [23] Multigrid methods for isogeometric discretization
    Gahalaut, K. P. S.
    Kraus, J. K.
    Tomar, S. K.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 253 : 413 - 425
  • [24] Study of Discretization Methods in Classification
    Lavangnananda, K.
    Chattanachot, S.
    2017 9TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SMART TECHNOLOGY (KST), 2017, : 50 - 55
  • [25] Discretization methods for homogeneous fragmentations
    Bertoin, J
    Rouault, A
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 : 91 - 109
  • [26] Discretization schemes for hybrid methods
    Geuzaine, C
    Tarhasaari, T
    Kettunen, L
    Dular, P
    IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (05) : 3112 - 3115
  • [27] REMARKS ON THE STABILITY OF DISCRETIZATION METHODS
    GALANTAI, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (06): : T611 - T612
  • [28] Effective training methods for function localization neural networks
    Sasakawa, Takafumi
    Hu, Jinglu
    Isono, Katsunori
    Hirasawa, Kotaro
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 4785 - +
  • [29] DISTANCE FUNCTION AND SINGULARITIES
    POLY, JB
    RABY, G
    BULLETIN DES SCIENCES MATHEMATIQUES, 1984, 108 (02): : 187 - 195
  • [30] Representation of the singularities of a function
    Aubry, JL
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 6 (02) : 282 - 286