Hand Gesture Recognition Using a Radar Echo I-Q Plot and a Convolutional Neural Network

被引:33
|
作者
Sakamoto, Takuya [1 ,2 ,3 ]
Gao, Xiaomeng [4 ,5 ,6 ]
Yavari, Ehsan [4 ]
Rahman, Ashikur [1 ,7 ]
Boric-Lubecke, Olga [1 ]
Lubecke, Victor M. [1 ]
机构
[1] Univ Hawaii Manoa, Dept Elect Engn, Honolulu, HI 96822 USA
[2] Univ Hyogo, Grad Sch Engn, Himeji, Hyogo 6712280, Japan
[3] Kyoto Univ, Grad Sch Informat, Kyoto 6068501, Japan
[4] Adnoviv LLC, Honolulu, HI 96822 USA
[5] Univ Calif Davis, Davis, CA 95616 USA
[6] Cardiac Mot LLC, Sacramento, CA 95817 USA
[7] Aptiv PLC, Kokomo, IN 46902 USA
基金
日本学术振兴会;
关键词
Sensor signals processing; gesture recognition; machine learning; neural network; radar;
D O I
10.1109/LSENS.2018.2866371
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a hand gesture recognition technique using a convolutional neural network applied to radar echo inphase/quadrature (I/Q) plot trajectories. The proposed technique is demonstrated to accurately recognize six types of hand gestures for ten participants. The system consists of a low-cost 2.4-GHz continuous-wave monostatic radar with a single antenna. The radar echo trajectories are converted to low-resolution images and are used for the training and evaluation of the proposed technique. Results indicate that the proposed technique can recognize hand gestures with average accuracy exceeding 90%.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Static Hand Gesture Recognition for American Sign Language using Deep Convolutional Neural Network
    Das, Prangon
    Ahmed, Tanvir
    Ali, Md Firoj
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 762 - 765
  • [32] Dynamic Hand Gesture Recognition using Convolutional Neural Network with RGB-D Fusion
    Verma, Bindu
    Choudhary, Ayesha
    ELEVENTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING (ICVGIP 2018), 2018,
  • [33] Hand gesture recognition based on micro-Doppler radar using graph neural network
    Xiong, Zhangjin
    Ma, Kaixue
    Yan, Ningning
    ELECTRONICS LETTERS, 2024, 60 (03)
  • [34] Gesture Recognition with a Low Power FMCW Radar and a Deep Convolutional Neural Network
    Dekker, B.
    Jacobs, S.
    Kossen, A. S.
    Kruithof, M. C.
    Huizing, A. G.
    Geurts, M.
    2017 EUROPEAN RADAR CONFERENCE (EURAD), 2017, : 163 - 166
  • [35] Hand gesture recognition via enhanced densely connected convolutional neural network
    Tan, Yong Soon
    Lim, Kian Ming
    Lee, Chin Poo
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 175
  • [36] Social Touch Gesture Recognition Using Convolutional Neural Network
    Albawi, Saad
    Bayat, Oguz
    Al-Azawi, Saad
    Ucan, Osman N.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2018, 2018
  • [37] Angle based hand gesture recognition using graph convolutional network
    Aiman, Umme
    Ahmad, Tanvir
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2024, 35 (01)
  • [38] Hand-Gesture Recognition Using Two-Antenna Doppler Radar With Deep Convolutional Neural Networks
    Skaria, Sruthy
    Al-Hourani, Akram
    Lech, Margaret
    Evans, Robin J.
    IEEE SENSORS JOURNAL, 2019, 19 (08) : 3041 - 3048
  • [39] Hand gesture recognition based on convolutional neural networks
    Hu, Yu-lu
    Wang, Lian-ming
    LIDAR IMAGING DETECTION AND TARGET RECOGNITION 2017, 2017, 10605
  • [40] DYNAMIC HAND GESTURE RECOGNITION SYSTEM USING NEURAL NETWORK
    Mahanta, Chitralekha
    Yadav, T. Srinivas
    Medhi, Hemanta
    PECCS 2011: PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON PERVASIVE AND EMBEDDED COMPUTING AND COMMUNICATION SYSTEMS, 2011, : 253 - 256