Hand Gesture Recognition Using a Radar Echo I-Q Plot and a Convolutional Neural Network

被引:33
|
作者
Sakamoto, Takuya [1 ,2 ,3 ]
Gao, Xiaomeng [4 ,5 ,6 ]
Yavari, Ehsan [4 ]
Rahman, Ashikur [1 ,7 ]
Boric-Lubecke, Olga [1 ]
Lubecke, Victor M. [1 ]
机构
[1] Univ Hawaii Manoa, Dept Elect Engn, Honolulu, HI 96822 USA
[2] Univ Hyogo, Grad Sch Engn, Himeji, Hyogo 6712280, Japan
[3] Kyoto Univ, Grad Sch Informat, Kyoto 6068501, Japan
[4] Adnoviv LLC, Honolulu, HI 96822 USA
[5] Univ Calif Davis, Davis, CA 95616 USA
[6] Cardiac Mot LLC, Sacramento, CA 95817 USA
[7] Aptiv PLC, Kokomo, IN 46902 USA
基金
日本学术振兴会;
关键词
Sensor signals processing; gesture recognition; machine learning; neural network; radar;
D O I
10.1109/LSENS.2018.2866371
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a hand gesture recognition technique using a convolutional neural network applied to radar echo inphase/quadrature (I/Q) plot trajectories. The proposed technique is demonstrated to accurately recognize six types of hand gestures for ten participants. The system consists of a low-cost 2.4-GHz continuous-wave monostatic radar with a single antenna. The radar echo trajectories are converted to low-resolution images and are used for the training and evaluation of the proposed technique. Results indicate that the proposed technique can recognize hand gestures with average accuracy exceeding 90%.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Radar-based Hand Gesture Recognition Using I-Q Echo Plot and Convolutional Neural Network
    Sakamoto, Takuya
    Gao, Xiaomeng
    Yavari, Ehsan
    Rahman, Ashikur
    Boric-Lubecke, Olga
    Lubecke, Victor M.
    2017 IEEE CONFERENCE ON ANTENNA MEASUREMENTS & APPLICATIONS (CAMA), 2017, : 393 - 395
  • [2] Hand Gesture Recognition Using Convolutional Neural Network
    Ahlawat, Savita
    Batra, Vaibhav
    Banerjee, Snehashish
    Saha, Joydeep
    Garg, Aman K.
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, VOL 2, 2019, 56 : 179 - 186
  • [3] Hand Gesture Recognition Based-on Convolutional Neural Network Using a Bistatic Radar System
    He, Kaixuan
    Yang, Zhaocheng
    Zhuang, Luntao
    Zheng, Xinbo
    ELEVENTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING SYSTEMS, 2019, 11384
  • [4] HAND GESTURE RECOGNITION USING MEDIA PIPE AND CONVOLUTIONAL NEURAL NETWORK
    Adepu, Anjaiah
    Gade, Lakshmi Manaswini
    Bavikadi, Sindhuja
    Madide, Hemanth
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (05) : 1341 - 1351
  • [5] Recognition of Hand Gesture Image Using Deep Convolutional Neural Network
    Sagayam, K. Martin
    Andrushia, A. Diana
    Ghosh, Ahona
    Deperlioglu, Omer
    Elngar, Ahmed A.
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2022, 22 (03)
  • [6] Visual Static Hand Gesture Recognition Using Convolutional Neural Network
    Eid, Ahmed
    Schwenker, Friedhelm
    ALGORITHMS, 2023, 16 (08)
  • [7] Demo: Efficient Convolutional Neural Network for FMCW Radar Based Hand Gesture Recognition
    Cai, Xiaodong
    Ma, Jingyi
    Liu, Wei
    Han, Hemin
    Ma, Lili
    UBICOMP/ISWC'19 ADJUNCT: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2019 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, 2019, : 17 - 20
  • [8] CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE FOR HAND GESTURE RECOGNITION
    Pinzon Arenas, Javier Orlando
    Useche Murillo, Paula Catalina
    Jimenez Moreno, Robinson
    PROCEEDINGS OF THE 2017 IEEE XXIV INTERNATIONAL CONFERENCE ON ELECTRONICS, ELECTRICAL ENGINEERING AND COMPUTING (INTERCON), 2017,
  • [9] Hand Gesture Recognition via Radar Sensors and Convolutional Neural Networks
    Franceschini, S.
    Ambrosanio, M.
    Vitale, S.
    Baselice, F.
    Gifuni, A.
    Grassini, G.
    Pascazio, V
    2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
  • [10] Automated Hand Gesture Recognition using a Deep Convolutional Neural Network model
    Dhall, Ishika
    Vashisth, Shubham
    Aggarwal, Garima
    PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, : 811 - 816