Deep-Cryogenic Voltage References in 40-nm CMOS

被引:27
|
作者
Homulle, Harald [1 ]
Sebastiano, Fabio [1 ]
Charbon, Edoardo [2 ]
机构
[1] Delft Univ Technol, QuTech, NL-2628 CD Delft, Netherlands
[2] Ecole Polytech Fed Lausanne, AQUA, CH-1015 Lausanne, Switzerland
来源
IEEE SOLID-STATE CIRCUITS LETTERS | 2018年 / 1卷 / 05期
关键词
Bandgap; cryogenic; MOS; voltage reference;
D O I
10.1109/LSSC.2018.2875821
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The increasing interest in electronics specifically designed to control quantum processors is currently driven by the quest for large-scale quantum computing. A promising approach is emerging based on the use of CMOS devices operating at deep-cryogenic temperatures, and several essential components have been demonstrated to operate at such temperatures, from basic MOSFETs to field-programmable gate arrays. In this letter, we show, for the first time, a voltage reference in a standard CMOS technology that can guarantee a stable voltage over a wide range of temperatures from 300 K down to deep-cryogenic temperatures. By exploiting CMOS transistors in dynamic-threshold MOS configuration, the proposed reference occupies only 445 mu m(2) in a standard 40-nm CMOS process, while showing a temperature coefficient below 0.8 mV/K over the temperature range from 4 to 300 K. These results demonstrate the feasibility of wide-range cryogenic voltage references to enable future cryogenic applications.
引用
收藏
页码:110 / 113
页数:4
相关论文
共 50 条
  • [1] Quantum Transport in 40-nm MOSFETs a Deep-Cryogenic Temperatures
    Yang, T-Y
    Ruffino, A.
    Michniewicz, J.
    Peng, Y.
    Charbon, E.
    Gonzalez-Zalba, M. F.
    IEEE ELECTRON DEVICE LETTERS, 2020, 41 (07) : 981 - 984
  • [2] Cryogenic Characterization of Low-Frequency Noise in 40-nm CMOS
    Kiene, Gerd
    Ilik, Sadik
    Mastrodomenico, Luigi
    Babaie, Masoud
    Sebastiano, Fabio
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2024, 12 : 573 - 580
  • [3] Voltage References for the Ultra-Wide Temperature Range from 4.2 K to 300 K in 40-nm CMOS
    van Staveren, J.
    Almudever, C. Garcia
    Scappucci, G.
    Veldhorst, M.
    Babaie, M.
    Charbon, E.
    Sebastiano, F.
    IEEE 45TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2019), 2019, : 37 - 40
  • [4] Nanometer CMOS Characterization and Compact Modeling at Deep-Cryogenic Temperatures
    Incandela, R. M.
    Song, L.
    Homulle, H. A. R.
    Sebastiano, F.
    Charbon, E.
    Vladimirescu, A.
    2017 47TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2017, : 58 - 61
  • [5] Millimeter-Wave Amplifiers in 40-nm CMOS
    Wang, Huei
    Hsiao, Yuan-Hung
    Yeh, Kuang-Sheng
    Chou, Yu-Ting
    Wang, Jun-Kai
    Lin, Yu-Hsuan
    2016 ASIA-PACIFIC MICROWAVE CONFERENCE (APMC2016), 2016,
  • [6] Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures
    Incandela, Rosario M.
    Song, Lin
    Homulle, Harald
    Charbon, Edoardo
    Vladimirescu, Andrei
    Sebastiano, Fabio
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2018, 6 (01): : 996 - 1006
  • [7] A 60-GHz Outphasing Transmitter in 40-nm CMOS
    Zhao, Dixian
    Kulkarni, Shailesh
    Reynaert, Patrick
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (12) : 3172 - 3183
  • [8] Avalanche double photodiode in 40-nm standard CMOS technology
    Atef, Mohamed
    Polzer, Andreas
    Zimmermann, Horst
    Atef, M. (mabdelaal@emce.tuwien.ac.at), 1600, Institute of Electrical and Electronics Engineers Inc., United States (49): : 350 - 356
  • [9] A Benchmark of Cryo-CMOS Embedded SRAM/DRAMs in 40-nm CMOS
    Damsteegt, Rob A.
    Overwater, Ramon W. J.
    Babaie, Masoud
    Sebastiano, Fabio
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2024, 59 (07) : 2042 - 2054
  • [10] Design of THz Monolithic Source and Detector in 40-nm CMOS
    Lei-jun Xu
    Zhi-jian Xie
    Xue Bai
    Qin Li
    Bai-kang Wang
    Peng-cheng Yin
    Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42 : 1040 - 1060