Optimal tolerance regions for some functions of multiple regression model with Student-t errors

被引:3
|
作者
Khan, Shahjahan [1 ]
机构
[1] Univ Southern Queensland, Dept Math & Comp, Toowoomba, Qld, Australia
来源
关键词
Multiple regression model; prediction distribution; optimal beta-expectation tolerance region; invariant differential; non-informative prior; multivariate Student-t; beta and F-distributions;
D O I
10.1080/09720510.2006.10701231
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the multiple regression model to determine optimal beta-expectation tolerance regions for the Future Regression Vector (FRV) and Future Residual Sum of Squares (FRSS) by using the prediction distributions of some appropriate functions of future responses. It is assumed that the errors of the regression model follow a multivariate Student-t distribution with unknown shape parameter, nu. The prediction distribution of the FRV, conditional on the observed responses, is a multivariate Student-t distribution but its shape parameter does not depend on the unknown degrees of freedom of the Student-t model. Similarly, the prediction distribution of the FRSS is a beta distribution. The optimal beta-expectation tolerance regions for the FRV and FRSS have been obtained based on the F-distribution and beta distribution respectively.
引用
收藏
页码:699 / 715
页数:17
相关论文
共 50 条
  • [1] Student-t Process Regression with Student-t Likelihood
    Tang, Qingtao
    Niu, Li
    Wang, Yisen
    Dai, Tao
    An, Wangpeng
    Cai, Jianfei
    Xia, Shu-Tao
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2822 - 2828
  • [2] Student-t Process Regression with Dependent Student-t Noise
    Tang, Qingtao
    Wang, Yisen
    Xia, Shu-Tao
    [J]. ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 82 - 89
  • [3] BETA-EXPECTATION TOLERANCE REGION FOR THE HETEROSCEDASTIC MULTIPLE-REGRESSION MODEL WITH MULTIVARIATE STUDENT-T ERROR
    KHAN, S
    [J]. STATISTICAL PAPERS, 1994, 35 (02) : 127 - 138
  • [4] Student-t censored regression model: properties and inference
    Reinaldo B. Arellano-Valle
    Luis M. Castro
    Graciela González-Farías
    Karla A. Muñoz-Gajardo
    [J]. Statistical Methods & Applications, 2012, 21 : 453 - 473
  • [5] Objective Bayesian analysis for the Student-t regression model
    Fonseca, Thais C. O.
    Ferreira, Marco A. R.
    Migon, Helio S.
    [J]. BIOMETRIKA, 2008, 95 (02) : 325 - 333
  • [6] Student-t censored regression model: properties and inference
    Arellano-Valle, Reinaldo B.
    Castro, Luis M.
    Gonzalez-Farias, Graciela
    Munoz-Gajardo, Karla A.
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2012, 21 (04): : 453 - 473
  • [7] DSGE MODELS WITH STUDENT-t ERRORS
    Chib, Siddhartha
    Ramamurthy, Srikanth
    [J]. ECONOMETRIC REVIEWS, 2014, 33 (1-4) : 152 - 171
  • [8] Shrinkage pre-test estimator of the intercept parameter for a regression model with multivariate student-t errors
    Khan, S
    Saleh, AKME
    [J]. BIOMETRICAL JOURNAL, 1997, 39 (02) : 131 - 147
  • [9] Optimal tolerance regions for future regression vector and residual sum of squares of multiple regression model with multivariate spherically contoured errors
    Khan, Shahjahan
    [J]. STATISTICAL PAPERS, 2009, 50 (03) : 511 - 525
  • [10] Optimal tolerance regions for future regression vector and residual sum of squares of multiple regression model with multivariate spherically contoured errors
    Shahjahan Khan
    [J]. Statistical Papers, 2009, 50