EVOLVING SPIKING NEURAL NETWORK TOPOLOGIES FOR BREAST CANCER CLASSIFICATION IN A DIELECTRICALLY HETEROGENEOUS BREAST

被引:2
|
作者
O'Halloran, M. [1 ,2 ]
Cawley, S. [1 ,2 ]
McGinley, B. [1 ,2 ]
Conceicao, R. C. [1 ,2 ]
Morgan, F. [1 ,2 ]
Jones, E. [1 ,2 ]
Glavin, M. [1 ,2 ]
机构
[1] Natl Univ Ireland Galway, Coll Engn & Informat, Univ Rd, Galway, Ireland
[2] Natl Univ Ireland Galway, NCBES, Bioelect Res Cluster, Galway, Ireland
基金
爱尔兰科学基金会;
关键词
Diseases - Topology - Ultra-wideband (UWB) - Neural networks - Radar - Neurons;
D O I
10.2528/PIERL11050605
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Several studies have investigated the possibility of using the Radar Target Signature (RTS) of a tumour to classify the tumour as either benign or malignant, since the RTS has been shown to be influenced by the size, shape and surface texture of tumours. The Evolved-Topology Spiking Neural Neural (SNN) presented here extends the use of evolutionary algorithms to determine an optimal number of neurons and interneuron connections, forming a robust and accurate Ultra Wideband Radar (UWB) breast cancer classifier. The classifier is examined using dielectrically realistic numerical breast models, and the performance of the classifier is compared to an existing Fixed-Topology SNN cancer classifier.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 50 条
  • [41] Neural network based algorithms for diagnosis and classification of breast cancer tumor
    Jung, IS
    Thapa, D
    Wang, GN
    COMPUTATIONAL INTELLIGENCE AND SECURITY, PT 1, PROCEEDINGS, 2005, 3801 : 107 - 114
  • [42] Breast Cancer Classification and Proof of Key Artificial Neural Network Terminologies
    Ali, Nisar
    Ansari, Shahab
    Halim, Zahid
    Ali, Raja Hashim
    Khan, Muhammad Faizan
    Khan, Mohsin
    2019 13TH INTERNATIONAL CONFERENCE ON MATHEMATICS, ACTUARIAL SCIENCE, COMPUTER SCIENCE AND STATISTICS (MACS-13), 2019,
  • [43] Classification of breast cancer mammogram images using convolution neural network
    Albalawi, Umar
    Manimurugan, S.
    Varatharajan, R.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (13):
  • [44] Classification of breast cancer cytological specimen using convolutional neural network
    Zejmo, Michal
    Kowal, Marek
    Korbicz, Jozef
    Monczak, Roman
    13TH EUROPEAN WORKSHOP ON ADVANCED CONTROL AND DIAGNOSIS (ACD 2016), 2017, 783
  • [45] Breast cancer pathological image classification based on a convolutional neural network
    Yu L.
    Xia Y.
    Yan Y.
    Wang P.
    Cao W.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2021, 42 (04): : 567 - 573
  • [46] Fast Modular Artificial Neural Network for the Classification of Breast Cancer Data
    Doreswamy
    Salma, Umme M.
    PROCEEDING OF THE THIRD INTERNATIONAL SYMPOSIUM ON WOMEN IN COMPUTING AND INFORMATICS (WCI-2015), 2015, : 66 - 72
  • [47] FPGA Implementation of an Evolving Spiking Neural Network
    Zuppicich, Alan
    Soltic, Snjezana
    ADVANCES IN NEURO-INFORMATION PROCESSING, PT I, 2009, 5506 : 1129 - 1136
  • [48] Evolving spiking neural network-a survey
    Schliebs S.
    Kasabov N.
    Schliebs, S. (sschlieb@aut.ac.nz), 1600, Springer Verlag (04): : 87 - 98
  • [49] Skin Cancer Classification Using Deep Spiking Neural Network
    Gilani, Syed Qasim
    Syed, Tehreem
    Umair, Muhammad
    Marques, Oge
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (03) : 1137 - 1147
  • [50] Skin Cancer Classification Using Deep Spiking Neural Network
    Syed Qasim Gilani
    Tehreem Syed
    Muhammad Umair
    Oge Marques
    Journal of Digital Imaging, 2023, 36 : 1137 - 1147