EVOLVING SPIKING NEURAL NETWORK TOPOLOGIES FOR BREAST CANCER CLASSIFICATION IN A DIELECTRICALLY HETEROGENEOUS BREAST

被引:2
|
作者
O'Halloran, M. [1 ,2 ]
Cawley, S. [1 ,2 ]
McGinley, B. [1 ,2 ]
Conceicao, R. C. [1 ,2 ]
Morgan, F. [1 ,2 ]
Jones, E. [1 ,2 ]
Glavin, M. [1 ,2 ]
机构
[1] Natl Univ Ireland Galway, Coll Engn & Informat, Univ Rd, Galway, Ireland
[2] Natl Univ Ireland Galway, NCBES, Bioelect Res Cluster, Galway, Ireland
基金
爱尔兰科学基金会;
关键词
Diseases - Topology - Ultra-wideband (UWB) - Neural networks - Radar - Neurons;
D O I
10.2528/PIERL11050605
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Several studies have investigated the possibility of using the Radar Target Signature (RTS) of a tumour to classify the tumour as either benign or malignant, since the RTS has been shown to be influenced by the size, shape and surface texture of tumours. The Evolved-Topology Spiking Neural Neural (SNN) presented here extends the use of evolutionary algorithms to determine an optimal number of neurons and interneuron connections, forming a robust and accurate Ultra Wideband Radar (UWB) breast cancer classifier. The classifier is examined using dielectrically realistic numerical breast models, and the performance of the classifier is compared to an existing Fixed-Topology SNN cancer classifier.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 50 条
  • [21] Correction to: Deep convolutional spiking neural network fostered automatic detection and classification of breast cancer from mammography images
    T. Senthil Prakash
    G. Kannan
    Salini Prabhakaran
    Bhagirath Parshuram Prajapati
    Research on Biomedical Engineering, 2023, 39 (4) : 1033 - 1033
  • [22] Heterogeneous recurrent spiking neural network for spatio-temporal classification
    Chakraborty, Biswadeep
    Mukhopadhyay, Saibal
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [23] Integrated Evolving Spiking Neural Network and Feature Extraction Methods for Scoliosis Classification
    Sabri, Nurbaity
    Hamed, Haza Nuzly Abdull
    Ibrahim, Zaidah
    Ibrahim, Kamalnizat
    Isa, Mohd Adham
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (03): : 5559 - 5573
  • [24] Development of a Self-Regulating Evolving Spiking Neural Network for classification problem
    Dora, S.
    Subramanian, K.
    Suresh, S.
    Sundararajan, N.
    NEUROCOMPUTING, 2016, 171 : 1216 - 1229
  • [25] Hyperparameter Optimization of Evolving Spiking Neural Network for Time-Series Classification
    Tasbiha Ibad
    Said Jadid Abdulkadir
    Norshakirah Aziz
    Mohammed Gamal Ragab
    Qasem Al-Tashi
    New Generation Computing, 2022, 40 : 377 - 397
  • [26] SpikeComp: An Evolving Spiking Neural Network with Adaptive Compact Structure for Pattern Classification
    Wang, Jinling
    Belatreche, Ammar
    Maguire, Liam P.
    McGinnity, T. Martin
    NEURAL INFORMATION PROCESSING, PT II, 2015, 9490 : 259 - 267
  • [27] Hyperparameter Optimization of Evolving Spiking Neural Network for Time-Series Classification
    Ibad, Tasbiha
    Abdulkadir, Said Jadid
    Aziz, Norshakirah
    Ragab, Mohammed Gamal
    Al-Tashi, Qasem
    NEW GENERATION COMPUTING, 2022, 40 (01) : 377 - 397
  • [28] Convolutional Neural Network Based Breast Cancer Histopathology Image Classification
    Yamlome, Pascal
    Akwaboah, Akwasi Darkwa
    Marz, Aylin
    Deo, Makarand
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1144 - 1147
  • [29] Breast Cancer Classification using a Hybrid Model of Fuzzy and Neural Network
    Wutsqa, Dhoriva Urwatul
    Abadi, Agus Maman
    Nurhayadi
    IAENG International Journal of Computer Science, 2022, 49 (02)
  • [30] Optimized Radial Basis Neural Network for Classification of Breast Cancer Images
    Rajathi, G. M.
    CURRENT MEDICAL IMAGING, 2021, 17 (01) : 97 - 108