EVOLVING SPIKING NEURAL NETWORK TOPOLOGIES FOR BREAST CANCER CLASSIFICATION IN A DIELECTRICALLY HETEROGENEOUS BREAST

被引:2
|
作者
O'Halloran, M. [1 ,2 ]
Cawley, S. [1 ,2 ]
McGinley, B. [1 ,2 ]
Conceicao, R. C. [1 ,2 ]
Morgan, F. [1 ,2 ]
Jones, E. [1 ,2 ]
Glavin, M. [1 ,2 ]
机构
[1] Natl Univ Ireland Galway, Coll Engn & Informat, Univ Rd, Galway, Ireland
[2] Natl Univ Ireland Galway, NCBES, Bioelect Res Cluster, Galway, Ireland
基金
爱尔兰科学基金会;
关键词
Diseases - Topology - Ultra-wideband (UWB) - Neural networks - Radar - Neurons;
D O I
10.2528/PIERL11050605
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Several studies have investigated the possibility of using the Radar Target Signature (RTS) of a tumour to classify the tumour as either benign or malignant, since the RTS has been shown to be influenced by the size, shape and surface texture of tumours. The Evolved-Topology Spiking Neural Neural (SNN) presented here extends the use of evolutionary algorithms to determine an optimal number of neurons and interneuron connections, forming a robust and accurate Ultra Wideband Radar (UWB) breast cancer classifier. The classifier is examined using dielectrically realistic numerical breast models, and the performance of the classifier is compared to an existing Fixed-Topology SNN cancer classifier.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 50 条
  • [1] SPIKING NEURAL NETWORKS FOR BREAST CANCER CLASSIFICATION IN A DIELECTRICALLY HETEROGENEOUS BREAST
    O'Halloran, M.
    McGinley, B.
    Conceicao, R. C.
    Morgan, F.
    Jones, E.
    Glavin, M.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2011, 113 : 413 - 428
  • [2] Breast Cancer Classification with Wavelet Neural Network
    Ucar, Kursad
    Kocer, Hasan Erdinc
    2017 INTERNATIONAL ARTIFICIAL INTELLIGENCE AND DATA PROCESSING SYMPOSIUM (IDAP), 2017,
  • [3] Probabilistic neural network for breast cancer classification
    Azar, Ahmad Taher
    El-Said, Shaimaa Ahmed
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (06): : 1737 - 1751
  • [4] Probabilistic neural network for breast cancer classification
    Ahmad Taher Azar
    Shaimaa Ahmed El-Said
    Neural Computing and Applications, 2013, 23 : 1737 - 1751
  • [5] Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem
    Davoudi, Khatereh
    Thulasiraman, Parimala
    SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2021, 97 (08): : 511 - 527
  • [6] Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem
    Davoudi, Khatereh
    Thulasiraman, Parimala
    Thulasiraman, Parimala (Parimala.Thulasiraman@umanitoba.ca), 1600, SAGE Publications Ltd (97): : 511 - 527
  • [7] Breast Cancer Classification Using Convolutional Neural Network
    Alshanbari, Eman
    Alamri, Hanaa
    Alzahrani, Walaa
    Alghamdi, Manal
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (06): : 101 - 106
  • [8] Customized Convolutional Neural Network for Breast Cancer Classification
    Kadadevarmath J.
    Reddy A.P.
    SN Computer Science, 5 (2)
  • [9] Convolutional neural network improvement for breast cancer classification
    Ting, Fung Fung
    Tan, Yen Jun
    Sim, Kok Swee
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 120 : 103 - 115
  • [10] Neural Network Architecture for Breast Cancer Detection and Classification
    Jouni, Hassan
    Issa, Mariam
    Harb, Adnan
    Jacquemod, Gilles
    Leduc, Yves
    2016 IEEE INTERNATIONAL MULTIDISCIPLINARY CONFERENCE ON ENGINEERING TECHNOLOGY (IMCET), 2016, : 37 - 41