Polynomial Formula for Sums of Powers of Integers

被引:0
|
作者
Athreya, K. B. [1 ]
Kothari, S. [2 ]
机构
[1] Iowa State Univ, Math & Stat, Ames, IA USA
[2] Iowa State Univ, Dept Elect Engn, Ames, IA USA
来源
关键词
Sums of powers; integers; polynomial formula;
D O I
10.1007/s12045-015-0229-9
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
In this article, it is shown that for any positive integer k >= 1, there exist unique real numbers a(kr), r = 1, 2, ..., (k + 1), such that for any integer n >= 1 S-k,S-n equivalent to Sigma(n)(j=1) j(k) = Sigma((k+1))(r=1) a(kr)n(r). The numbers a(kr) are computed explicitly for r = k + 1, k, k - 1, ..., (k - 10). This fully determines the polynomials for k = 1, 2, ..., 12. The cases k = 1, 2, 3 are well known and available in high school algebra books.
引用
收藏
页码:726 / 743
页数:18
相关论文
共 50 条
  • [31] Conjectures Involving a Generalization of the Sums of Powers of Integers
    Svinin, Andrei K.
    EXPERIMENTAL MATHEMATICS, 2018, 27 (04) : 437 - 443
  • [32] Averaging sums of powers of integers and Faulhaber polynomials
    Luis Cereceda, Jose
    ANNALES MATHEMATICAE ET INFORMATICAE, 2013, 42 : 105 - 117
  • [33] Visual proofs of sums of powers of positive integers
    Chakraborty, Manishita
    MATHEMATICAL GAZETTE, 2022, 106 (567): : 515 - 516
  • [34] Powers of integers as sums of consecutive odd numbers
    Junaidu, S. B.
    Laradji, A.
    Umar, A.
    MATHEMATICAL GAZETTE, 2010, 94 (529): : 117 - 119
  • [35] NOTE ON REPRESENTATION OF INTEGERS AS SUMS OF CERTAIN POWERS
    THANIGAS.K
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 65 : 445 - &
  • [37] Sums of powers of integers via generating functions
    Howard, FT
    FIBONACCI QUARTERLY, 1996, 34 (03): : 244 - 256
  • [38] Polynomial values of sums of products of consecutive integers
    Bazso, A.
    Berczes, A.
    Hajdu, L.
    Luca, F.
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (01): : 21 - 34
  • [39] FACTORS OF SUMS AND ALTERNATING SUMS INVOLVING BINOMIAL COEFFICIENTS AND POWERS OF INTEGERS
    Guo, Victor J. W.
    Zeng, Jiang
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (07) : 1959 - 1976
  • [40] Polynomial values of sums of products of consecutive integers
    A. Bazsó
    A. Bérczes
    L. Hajdu
    F. Luca
    Monatshefte für Mathematik, 2018, 187 : 21 - 34