phi-Divergence Loss-Based Artificial Neural Network

被引:0
|
作者
Salamwade, R. L. [1 ]
Sakate, D. M. [1 ]
Mathur, S. K. [2 ]
机构
[1] Shivaji Univ, Kolhapur, Maharashtra, India
[2] Augusta Univ, Augusta, GA USA
关键词
Power divergence family; classification; back-propagation; loss function; mean square error;
D O I
10.22237/jmasm/1551966252
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Artificial Neural Networks (ANNs) can fit non-linear functions and recognize patterns better than several standard techniques. Performance of ANNs is measured by using loss functions. Phi-divergence estimator is generalization of maximum likelihood estimator and it possesses all its properties. A neural network is proposed which is trained using phidivergence loss.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Empirical phi-divergence test statistics for the difference of means of two populations
    Balakrishnan, N.
    Martin, N.
    Pardo, L.
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2017, 101 (02) : 199 - 226
  • [22] Preliminary Test Estimators and Phi-divergence Measures in Pooling Binomial Data
    Martin, Nirian
    Pardo, Leandro
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2012, 8 (03) : 331 - 343
  • [23] Minimum phi-divergence estimators for multinomial logistic regression with complex sample design
    Castilla, Elena
    Martin, Nirian
    Pardo, Leandro
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2018, 102 (03) : 381 - 411
  • [24] Phi-divergence statistics for the likelihood ratio order: An approach based on log-linear models
    Martin, Nirian
    Mata, Raquel
    Pardo, Leandro
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 130 : 387 - 408
  • [25] Empirical phi-divergence test statistics for testing simple and composite null hypotheses
    Balakrishnan, N.
    Martin, N.
    Pardo, L.
    [J]. STATISTICS, 2015, 49 (05) : 951 - 977
  • [26] Minimum phi-divergence estimators for multinomial logistic regression with complex sample design
    Elena Castilla
    Nirian Martín
    Leandro Pardo
    [J]. AStA Advances in Statistical Analysis, 2018, 102 : 381 - 411
  • [27] Preliminary phi-divergence test estimators for linear restrictions in a logistic regression model
    M. L. Menéndez
    L. Pardo
    M. C. Pardo
    [J]. Statistical Papers, 2009, 50 : 277 - 300
  • [28] Minimum Phi-divergence estimators for loglinear models with linear constraints and multinomial sampling
    Martin, N.
    Pardo, L.
    [J]. STATISTICAL PAPERS, 2008, 49 (01) : 15 - 36
  • [29] Minimum phi-divergence estimators for loglinear models with linear constraints and multinomial sampling
    N. Martín
    L. Pardo
    [J]. Statistical Papers, 2008, 49 : 15 - 36
  • [30] Change-point detection in multinomial data using phi-divergence test statistics
    Batsidis, A.
    Horvath, L.
    Martin, N.
    Pardo, L.
    Zografos, K.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 118 : 53 - 66