Change-point detection in multinomial data using phi-divergence test statistics

被引:11
|
作者
Batsidis, A. [1 ]
Horvath, L. [2 ]
Martin, N. [3 ]
Pardo, L. [4 ,5 ]
Zografos, K. [1 ]
机构
[1] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[3] Univ Carlos III Madrid, Dept Stat, E-28903 Getafe, Spain
[4] Univ Complutense Madrid, Dept Stat, E-28040 Madrid, Spain
[5] Univ Complutense Madrid, OR, E-28040 Madrid, Spain
关键词
Multinomial sampling; Change-point; Phi-divergence test statistics;
D O I
10.1016/j.jmva.2013.03.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose two families of maximally selected phi-divergence tests to detect a change in the probability vectors of a sequence of multinomial random variables with possibly different sizes. In addition, the proposed statistics can be used to estimate the location of the change-point. We derive the limit distributions of the proposed statistics under the no change null hypothesis. One of the families has an extreme value limit. The limit of the other family is the maximum of the norm of a multivariate Brownian bridge. We check the accuracy of these limit distributions in case of finite sample sizes. A Monte Carlo analysis shows the possibility of improving the behavior of the test statistics based on the likelihood ratio and chi-square tests introduced in Horvath and Serbinowska [7]. The classical Lindisfarne Scribes problem is used to demonstrate the applicability of the proposed statistics to real life data sets. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:53 / 66
页数:14
相关论文
共 50 条
  • [1] Preliminary Phi-divergence test estimator for multinomial probabilities
    Gupta, AK
    Nguyen, T
    Pardo, L
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (07) : 1749 - 1773
  • [2] PHI-DIVERGENCE STATISTICS - SAMPLING PROPERTIES AND MULTINOMIAL GOODNESS OF FIT AND DIVERGENCE TESTS
    ZOGRAFOS, K
    FERENTINOS, K
    PAPAIOANNOU, T
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1990, 19 (05) : 1785 - 1802
  • [3] Minimum Phi-Divergence Estimators and Phi-Divergence Test Statistics in Contingency Tables with Symmetry Structure: An Overview
    Pardo, Leandro
    Martin, Nirian
    [J]. SYMMETRY-BASEL, 2010, 2 (02): : 1108 - 1120
  • [4] Phi-divergence test statistics for trends in binary responses
    Menéndez, ML
    [J]. SOFT METHODOLOGY AND RANDOM INFORMATION SYSTEMS, 2004, : 379 - 386
  • [5] The moment-corrected phi-divergence test statistics for symmetry
    Menendez, M. L.
    Pardo, J. A.
    Pardo, L.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 202 (02) : 315 - 327
  • [6] Empirical phi-divergence test statistics for the difference of means of two populations
    N. Balakrishnan
    N. Martín
    L. Pardo
    [J]. AStA Advances in Statistical Analysis, 2017, 101 : 199 - 226
  • [7] Empirical phi-divergence test statistics for the difference of means of two populations
    Balakrishnan, N.
    Martin, N.
    Pardo, L.
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2017, 101 (02) : 199 - 226
  • [8] CHANGE-POINT DETECTION IN MULTINOMIAL DATA WITH A LARGE NUMBER OF CATEGORIES
    Wang, Guanghui
    Zou, Changliang
    Yin, Guosheng
    [J]. ANNALS OF STATISTICS, 2018, 46 (05): : 2020 - 2044
  • [9] Empirical phi-divergence test statistics for testing simple and composite null hypotheses
    Balakrishnan, N.
    Martin, N.
    Pardo, L.
    [J]. STATISTICS, 2015, 49 (05) : 951 - 977
  • [10] MULTINOMIAL SAMPLING FOR HIERARCHICAL CHANGE-POINT DETECTION
    Romero-Medrano, Lorena
    Moreno-Munoz, Pablo
    Artes-Rodriguez, Antonio
    [J]. PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,