phi-Divergence Loss-Based Artificial Neural Network

被引:0
|
作者
Salamwade, R. L. [1 ]
Sakate, D. M. [1 ]
Mathur, S. K. [2 ]
机构
[1] Shivaji Univ, Kolhapur, Maharashtra, India
[2] Augusta Univ, Augusta, GA USA
关键词
Power divergence family; classification; back-propagation; loss function; mean square error;
D O I
10.22237/jmasm/1551966252
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Artificial Neural Networks (ANNs) can fit non-linear functions and recognize patterns better than several standard techniques. Performance of ANNs is measured by using loss functions. Phi-divergence estimator is generalization of maximum likelihood estimator and it possesses all its properties. A neural network is proposed which is trained using phidivergence loss.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Tests of goodness of fit based on Phi-divergence
    Noughabi, Hadi Alizadeh
    Balakrishnan, Narayanaswamy
    [J]. JOURNAL OF APPLIED STATISTICS, 2016, 43 (03) : 412 - 429
  • [2] Optimal Phi-Divergence Tests
    Panayiotou, Panayiotis
    Karagrigoriou, Alex
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2011, 24 (11A): : 20 - 29
  • [3] Minimum Phi-Divergence Estimators and Phi-Divergence Test Statistics in Contingency Tables with Symmetry Structure: An Overview
    Pardo, Leandro
    Martin, Nirian
    [J]. SYMMETRY-BASEL, 2010, 2 (02): : 1108 - 1120
  • [4] Goodness of fit tests for logistic distribution based on Phi-divergence
    Al-Omari, Amer Ibrahim
    Zamanzade, Ehsan
    [J]. ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2018, 11 (01) : 185 - 195
  • [5] Phi-residual based on minimum phi-divergence estimator in the loglinear model of symmetry
    Gupta, AK
    Nguyen, TT
    Pardo, L
    [J]. SOFT METHODOLOGY AND RANDOM INFORMATION SYSTEMS, 2004, : 299 - 306
  • [6] Bahadur efficiency of the phi-divergence test statistic
    Pardo, L
    [J]. SOFT METHODOLOGY AND RANDOM INFORMATION SYSTEMS, 2004, : 307 - 314
  • [7] General Bootstrap for Dual phi-Divergence Estimates
    Bouzebda, Salim
    Cherfi, Mohamed
    [J]. JOURNAL OF PROBABILITY AND STATISTICS, 2012, 2012
  • [8] Consensus Distributionally Robust Optimization With Phi-Divergence
    Ohmori, Shunichi
    [J]. IEEE ACCESS, 2021, 9 : 92204 - 92213
  • [9] Residual analysis and outliers in loglinear models based on phi-divergence statistics
    Gupta, A. K.
    Nguyen, T.
    Pardo, L.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (04) : 1407 - 1423
  • [10] Preliminary Phi-divergence test estimator for multinomial probabilities
    Gupta, AK
    Nguyen, T
    Pardo, L
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (07) : 1749 - 1773