General Bootstrap for Dual phi-Divergence Estimates

被引:17
|
作者
Bouzebda, Salim [1 ,2 ]
Cherfi, Mohamed [2 ]
机构
[1] Univ Technol Compiegne, Lab Math Appl, BP 529, F-60205 Compiegne, France
[2] Univ Paris 06, LSTA, F-75252 Paris 05, France
关键词
D O I
10.1155/2012/834107
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A general notion of bootstrapped phi-divergence estimates constructed by exchangeably weighting sample is introduced. Asymptotic properties of these generalized bootstrapped phi-divergence estimates are obtained, by means of the empirical process theory, which are applied to construct the bootstrap confidence set with asymptotically correct coverage probability. Some of practical problems are discussed, including, in particular, the choice of escort parameter, and several examples of divergences are investigated. Simulation results are provided to illustrate the finite sample performance of the proposed estimators.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Optimal Phi-Divergence Tests
    Panayiotou, Panayiotis
    Karagrigoriou, Alex
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2011, 24 (11A): : 20 - 29
  • [2] Minimum Phi-Divergence Estimators and Phi-Divergence Test Statistics in Contingency Tables with Symmetry Structure: An Overview
    Pardo, Leandro
    Martin, Nirian
    [J]. SYMMETRY-BASEL, 2010, 2 (02): : 1108 - 1120
  • [3] Bahadur efficiency of the phi-divergence test statistic
    Pardo, L
    [J]. SOFT METHODOLOGY AND RANDOM INFORMATION SYSTEMS, 2004, : 307 - 314
  • [4] Tests of goodness of fit based on Phi-divergence
    Noughabi, Hadi Alizadeh
    Balakrishnan, Narayanaswamy
    [J]. JOURNAL OF APPLIED STATISTICS, 2016, 43 (03) : 412 - 429
  • [5] Consensus Distributionally Robust Optimization With Phi-Divergence
    Ohmori, Shunichi
    [J]. IEEE ACCESS, 2021, 9 : 92204 - 92213
  • [6] Preliminary Phi-divergence test estimator for multinomial probabilities
    Gupta, AK
    Nguyen, T
    Pardo, L
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (07) : 1749 - 1773
  • [7] Phi-divergence test statistics for trends in binary responses
    Menéndez, ML
    [J]. SOFT METHODOLOGY AND RANDOM INFORMATION SYSTEMS, 2004, : 379 - 386
  • [8] phi-Divergence Loss-Based Artificial Neural Network
    Salamwade, R. L.
    Sakate, D. M.
    Mathur, S. K.
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2018, 17 (02)
  • [9] PHI-DIVERGENCE STATISTICS - SAMPLING PROPERTIES AND MULTINOMIAL GOODNESS OF FIT AND DIVERGENCE TESTS
    ZOGRAFOS, K
    FERENTINOS, K
    PAPAIOANNOU, T
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1990, 19 (05) : 1785 - 1802
  • [10] Phi-divergence statistics for testing linear hypotheses in logistic regression models
    Menendez, Maria Luisa
    Pardo, Julio Angel
    Pardo, Leandro
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (04) : 494 - 507