QUICK 2D NAVIER-STOKES CODE

被引:0
|
作者
LEONARD, BP [1 ]
机构
[1] CUNY,NEW YORK,NY 10021
来源
BULLETIN OF THE AMERICAN PHYSICAL SOCIETY | 1979年 / 24卷 / 08期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1145 / 1145
页数:1
相关论文
共 50 条
  • [31] Uniqueness of the generators of the 2D Euler and Navier-Stokes flows
    Albeverio, S.
    Barbu, V.
    Ferrario, B.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2008, 118 (11) : 2071 - 2084
  • [32] The 2D constrained Navier-Stokes equation and intermediate asymptotics
    Caglioti, E.
    Pulvirenti, M.
    Rousset, F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (34)
  • [33] TIME-SPACE L2-BOUNDEDNESS FOR THE 2D NAVIER-STOKES EQUATIONS AND HYPERBOLIC NAVIER-STOKES EQUATIONS
    Kobayashi, Takayuki
    Misawa, Masashi
    Nakamura, Kenji
    TSUKUBA JOURNAL OF MATHEMATICS, 2019, 43 (02) : 223 - 239
  • [34] Feedback stabilization of 2D Navier-Stokes equations with Navier slip boundary conditions
    Lefter, Catalin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) : 553 - 562
  • [35] Ergodicity of the 2D Navier-Stokes equations with degenerate multiplicative noise
    Dong, Zhao
    Peng, Xu-hui
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (01): : 97 - 118
  • [36] Deterministic and stochastic 2D Navier-Stokes equations with anisotropic viscosity
    Liang, Siyu
    Zhang, Ping
    Zhu, Rongchan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 275 : 473 - 508
  • [37] Digital 2D state observers design for the Navier-Stokes equation
    Farkane, Ayoub
    Boutayeb, Mohamed
    Mohamed, Laaziri
    Ghogho, Mounir
    2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 1026 - 1030
  • [38] Inviscid limit of stochastic damped 2D Navier-Stokes equations
    Bessaih, Hakima
    Ferrario, Benedetta
    NONLINEARITY, 2014, 27 (01) : 1 - 15
  • [39] Pullback Attractors for 2D Navier-Stokes Equations with Delays and Their Regularity
    Garcia-Luengo, Julia
    Marin-Rubio, Pedro
    Real, Jose
    ADVANCED NONLINEAR STUDIES, 2013, 13 (02) : 331 - 357
  • [40] A KAM Approach to the Inviscid Limit for the 2D Navier-Stokes Equations
    Franzoi, Luca
    Montalto, Riccardo
    ANNALES HENRI POINCARE, 2024, 25 (12): : 5231 - 5275