ONE-BIT ADDER DESIGN BASED ON REED-MULLER EXPANSIONS

被引:1
|
作者
GUAN, Z
ALMAINI, AEA
机构
[1] Department of Electrical Electronic and Computer Engineering, Napier University, Edinburgh, 14 1DJ
关键词
D O I
10.1080/00207219508926289
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It has been claimed for some time that the Reed-Muller technique can yield a simpler arithmetic circuit if it is employed in the design procedure. In fact, no practical application in this field can be found in the open literature. This paper attempts to demonstrate a practical one-bit adder design that is based on the Reed-Muller expansion. Although the one-bit adder is simple, no method can always guarantee to obtain both a time and area optimal circuit. In this paper, a procedure to design both a time and area optimal one-bit adder in static CMOS circuits is presented. Some issues are also addressed for practical logic circuit design.
引用
收藏
页码:519 / 529
页数:11
相关论文
共 50 条
  • [21] EFFICIENT COMPUTATION OF QUATERNARY FIXED POLARITY REED-MULLER EXPANSIONS
    FALKOWSKI, BJ
    RAHARDJA, S
    IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 1995, 142 (05): : 345 - 352
  • [22] Hadamard-Walsh spectral characterization of Reed-Muller expansions
    Falkowski, Bogdan J.
    Chang, Chip-Hong
    Computers and Electrical Engineering, 1999, 25 (02): : 111 - 134
  • [23] A semicustom IC for generating optimum generalized Reed-Muller expansions
    Almaini, AEA
    MICROELECTRONICS JOURNAL, 1997, 28 (02) : 129 - 142
  • [24] On bit-level trellis complexity of Reed-Muller codes
    Lu, CC
    Huang, SH
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) : 2061 - 2064
  • [25] On bit-level trellis complexity of Reed-Muller codes
    Lu, Chung-Chin
    Huang, Sy-Hann
    IEEE Transactions on Information Theory, 1995, 41 (6 pt 2): : 2061 - 2064
  • [26] Quaternary Reed-Muller Expansions of Mixed Radix Arguments in Cryptographic Circuits
    Rafiev, Ashur
    Murphy, Julian P.
    Yakovlev, Alex
    ISMVL: 2009 39TH IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, 2009, : 370 - 376
  • [27] EFFICIENT COMPUTATION FOR TERNARY REED-MULLER EXPANSIONS UNDER FIXED POLARITIES
    FEI, BC
    HONG, QH
    WU, HM
    PERKOWSKI, MA
    ZHUANG, N
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1993, 75 (04) : 685 - 688
  • [28] Efficient algorithm to calculate Reed-Muller expansions over GF(4)
    Rahardja, S
    Falkowski, BJ
    IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 2001, 148 (06): : 289 - 295
  • [29] A ternary polarity conversion technique for fixed polarity Reed-Muller expansions
    Yu, Haizhen
    Wang, Pengjun
    Zhang, Yuejun
    2016 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2016,
  • [30] Minimization of k-variable-mixed-polarity Reed-Muller expansions
    Falkowski, BJ
    Chang, CH
    VLSI DESIGN, 2000, 11 (04) : 311 - 320