HELLENIC FAULT-TOLERANCE FOR ROBOTS

被引:3
|
作者
TOYE, G [1 ]
LEIFER, LJ [1 ]
机构
[1] STANFORD UNIV,DEPT MECH ENGN,CTR DESIGN RES,STANFORD,CA 94305
关键词
FAULT TOLERANT; REDUNDANT; MECHANTRONIC; ROBOT; VOTING; HETEROGENEOUS; ARCHITECTURE; SENSORS; ACTUATORS;
D O I
10.1016/0045-7906(94)90041-8
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In robot applications where the consequences of system failure are unbearable, fault tolerance is mandatory. Fault tolerant robots continue to function correctly despite component failures. Fault tolerant robots can be designed using the Helenic architecture. This architecture uses non-homogeneous functional modular redundancy and a democratic dynamic weighted voting algorithm for redundancy management to achieve fault tolerance. The benefits offered are increased reliability, maintainability, common mode failure resistance, and significant cost reductions. To demonstrate the fault tolerance capabilities of this system architecture, a 5 wheel omnidirectional mobile robot with sensors, computing elements and actuators was designed and simulated. Simulation results verify the robot's ability to continue 'correct' operation despite internal subsystem failures.
引用
收藏
页码:479 / 497
页数:19
相关论文
共 50 条
  • [31] Automating the addition of fault-tolerance
    Kulkarni, SS
    Arora, A
    [J]. FORMAL TECHNIQUES IN REAL-TIME AND FAULT-TOLERANT SYSTEMS, PROCEEDINGS, 2000, 1926 : 82 - 93
  • [32] Fault simulation to validate fault-tolerance in Ada
    Napier, J
    Chen, LP
    May, J
    Hughes, G
    [J]. COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2000, 15 (01): : 61 - 67
  • [33] Brief Announcement: Deaf, Dumb, and Chatting Robots Enabling Distributed Computation & Fault-Tolerance Among Stigmergic Robots
    Dieudonne, Yoann
    Dolev, Shlomi
    Petit, Franck
    Segal, Michael
    [J]. PODC'09: PROCEEDINGS OF THE 2009 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2009, : 308 - 309
  • [34] High speed dynamic fault-tolerance
    Sengupta, J
    Bansal, PK
    [J]. IEEE REGION 10 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONIC TECHNOLOGY, VOLS 1 AND 2, 2001, : 669 - 675
  • [35] High performance fault-tolerance for clouds
    Kyriazis, Dimosthenis
    Anagnostopoulos, Vasileios
    Arcangeli, Andrea
    Gilbert, David
    Kalogeras, Dimitrios
    Kat, Ronen
    Klein, Cristian
    Kokkinos, Panagiotis
    Kuperman, Yossi
    Nider, Joel
    Svard, Petter
    Tomas, Luis
    Varvarigos, Emmanuel
    Varvarigou, Theodora
    [J]. 2015 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATION (ISCC), 2015, : 251 - 257
  • [36] The global fault-tolerance of interconnection networks
    Harutyunyan, Hovhannes A.
    Morosan, Calin D.
    [J]. SNPD 2006: SEVENTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, PROCEEDINGS, 2006, : 171 - +
  • [37] Fault-tolerance of a Laboratory Computer Cluster
    Mollova, Stoyanka
    Georgieva, Penka
    Kostadinov, Atanas
    [J]. 2018 20TH INTERNATIONAL SYMPOSIUM ON ELECTRICAL APPARATUS AND TECHNOLOGIES (SIELA), 2018,
  • [38] Designing a resourceful fault-tolerance system
    Giguette, R
    Hassell, J
    [J]. JOURNAL OF SYSTEMS AND SOFTWARE, 2002, 62 (01) : 47 - 57
  • [39] Structure Fault-tolerance of the Augmented Cube
    Kan, Shuangxiang
    Fan, Jianxi
    Cheng, Baolei
    Wang, Xi
    Zhou, Jingya
    [J]. JOURNAL OF INTERNET TECHNOLOGY, 2020, 21 (06): : 1733 - 1746
  • [40] ROBOTIC FAULT-DETECTION AND FAULT-TOLERANCE - A SURVEY
    VISINSKY, ML
    CAVALLARO, JR
    WALKER, ID
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 1994, 46 (02) : 139 - 158