Definition and some Properties of Information Entropy

被引:0
|
作者
Zhang, Bo [1 ]
Nakamura, Yatsuka [1 ]
机构
[1] Shinshu Univ, Nagano, Japan
来源
FORMALIZED MATHEMATICS | 2007年 / 15卷 / 03期
关键词
D O I
10.2478/v10037-007-0012-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we mainly define the information entropy [3], [11] and prove some its basic properties. First, we discuss some properties on four kinds of transformation functions between vector and matrix. The transformation functions are LineVec2Mx, ColVec2Mx, Vec2DiagMx and Mx2FinS. Mx2FinS is a horizontal concatenation operator for a given matrix, treating rows of the given matrix as finite sequences, yielding a new finite sequence by horizontally joining each row of the given matrix in order to index. Then we define each concept of information entropy for a probability sequence and two kinds of probability matrices, joint and conditional, that are defined in article [25]. Further, we discuss some properties of information entropy including Shannon's lemma, maximum property, additivity and super-additivity properties.
引用
收藏
页码:111 / 119
页数:9
相关论文
共 50 条
  • [31] Some Properties of Past Entropy and their Applications
    Asok K. Nanda
    Prasanta Paul
    Metrika, 2006, 64 : 47 - 61
  • [32] SOME PROPERTIES OF ENTROPY AND HAUSDORFF DIMENSIONS
    BAKHTIN, VI
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1982, (05): : 25 - 29
  • [33] Some properties of cumulative Tsallis entropy
    Cali, Camilla
    Longobardi, Maria
    Ahmadi, Jafar
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 486 : 1012 - 1021
  • [34] Some properties of the entropy in the natural time
    Varotsos, PA
    Sarlis, NV
    Tanaka, HK
    Skordas, ES
    PHYSICAL REVIEW E, 2005, 71 (03):
  • [35] Δ-Entropy: Definition, properties and applications in system identification with quantized data
    Chen, Badong
    Zhu, Yu
    Hu, Jinchun
    Principe, Jose C.
    INFORMATION SCIENCES, 2011, 181 (07) : 1384 - 1402
  • [36] Definition of the α-Mellin Transform and Some of Its Properties
    Nikolova, Yanka
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'11): PROCEEDINGS OF THE 37TH INTERNATIONAL CONFERENCE, 2011, 1410
  • [37] MATHEMATICAL DEFINITION OF ENTROPY
    SKAGERSTAM, BS
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1974, A 29 (09): : 1239 - 1243
  • [38] The Information-Theoretical Entropy of Some Quantum Oscillators
    Popov, D.
    Pop, N.
    Popov, M.
    Simon, S.
    TIM 2013 PHYSICS CONFERENCE, 2014, 1634 : 192 - 197
  • [39] Improvements of some bounds on entropy measures in information theory
    Matic, M
    Pearce, CEM
    Pecaric, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1998, 1 (02): : 295 - 304
  • [40] Definition of Entropy.
    Kuiken, G.D.C.
    Entropie Paris, 1979, 15 (85): : 15 - 19